THE BRITISH LIBRARY

Science blog

34 posts categorized "Bioscience"

05 July 2017

A tribute to Anne McLaren

Add comment

Dame_Anne_McLaren_©_James_Brabazon
Dame Anne McLaren. Copyright © James Brabazon

 

To publicise the upcoming event: Anne McLaren: Science, Ethics and the Archive, to be held at the British Library on 20 July, 6.30-8.00 pm, we present a guest-post by Professor Marilyn Monk, UCL Emeritus Professor of Molecular Embryology, with her personal recollections of Anne McLaren.

       
It is a great honour to have this opportunity to give my own personal tribute to Anne McLaren. Anne was my role model and my mentor over so many years. Not only in my scientific life - although her influence here was huge - but she was such a tower of strength and support for me over many difficult times. ‘Water under the bridge Marilyn. Water under the bridge’, she would say, encouraging me to move on.

I worked closely with Anne in her Medical Research Council Mammalian Development Unit for 18 years from 1974 to 1992 and I remained in contact with her thereafter. I would often email or phone Anne – ‘what do you think of this Anne?’ – questions about science, about life, about new ideas. And she would always respond with words of wisdom and support.

Right from the beginning Anne accepted me unconditionally. My first encounter with Anne was my phone call to her in Edinburgh in 1974. At that time, Anne was in Animal Genetics at Kings Buildings in Edinburgh and I was in the Molecular Biology Department working on DNA replication and repair in bacteria and on slime mould aggregation. But, in 1974, our MRC unit in Molecular Biology in Edinburgh closed with the retirement of our director, Bill Hayes. The MRC told me that I could relocate to another MRC unit that interested me and that would have me. I visited many MRC units and talked to various people who were encouraging but nothing seemed to be right for the interests and expertise in research I had at the time. Then Harry Harris at the Galton Laboratory suggested I contact Anne McLaren as she was just about to move from Edinburgh to London to start up a new MRC Mammalian Development Unit at the Galton. I knew nothing at all about development - let alone mammalian development. A move to mice and their embryos would be a huge leap both intellectually and technically.

In any case, I plucked up courage to phone Anne in Edinburgh in 1974. I remember everything about that moment when I phoned Anne because I was holding onto my last hopes of continuing as a scientist. I introduced myself, told her my problems, and asked her if she would consider taking me on in her new MRC Unit in London. I told her I knew nothing about mice – I had only worked with bacteria, viruses and amoebae. She said, ‘Yes of course you can join me. You must!’ I was flabbergasted. So overjoyed I could not speak. She did not even know me. She didn’t ask to meet me. But she had no reservations. She’d give me a chance. But this says it all about Anne - a tower of strength and support, particularly for women scientists (in my experience, it can still be difficult, even today to be a woman in science).

But as well as being a tower of strength, Anne was patient, tolerant, allowing, and very wise. And of course - very intelligent. I would prefer to talk about science and life and new ideas with Anne than anyone else I know. And Anne was a great listener. She always liked my ‘What if’ ideas and 'Why' questions. She thought that some of them were 'whacky' (her word) but always interesting.

Another great quality of Anne’s was her wicked sense of humour and sense of fun. Over the years, she would only have to raise one eyebrow in my direction over some happening, or strange remark from an unsuspecting visitor, and it would be difficult for me not to collapse in giggles. I always knew what she meant by the raised eyebrow. I felt privileged to be a secret accomplice to the raised eyebrow.

I know there are so many others who will have had the same wonderful experiences of Anne and will be feeling the way that I do. In the days and weeks after Anne died, so many people shared that they had just been in touch with her about this or that – about meeting soon for a meal and a talk about science and about life, or asking her advice on various issues, or arranging some new initiative. I have realised that Anne was looking after all of us pretty much all of the time. She made each one of us feel special.

Her energy and engagement with life and people was phenomenal. In addition she had extra-ordinary self-discipline and I had a lot to learn from her here. I never once saw Anne nod off in a seminar. She listened carefully to everything everyone said and her responses were always measured, incisive and invariably ‘spot on’. She never said a bad word about anybody that I can remember. She never complained.

When I joined Anne’s Unit, I was already a molecular biologist of some 15 years. But as such, I was used to working with millions of cells, bacteria or amoeba. We used to call it bucket biochemistry. The huge challenge was to bring molecular biology to the few cells of the embryo and even to the single cell. And we did it. I guess the hallmark of my research with Anne was to make the molecular techniques a million times more sensitive so we could look at specific enzyme activity, specific gene expression, and specific gene mutation or modification in just a few cells, and even a single cell, of the embryo. Once these single-cell molecular technologies were established, we could apply them to different developmental and biological questions and many insights into mammalian development followed during the years I was at the Galton. We began with establishing the cycle of X chromosome activation and inactivation as a model for gene expression and its regulation in early development. From there, we made many new discoveries such as the late origin of the germ line (anti Weissman doctrine). differential methylation of the active and inactive X chromosomes (beginning of mechanisms of epigenetics), imprinting and transgenerational inheritance of acquired characteristics (Lamarkian inheritance) and the discovery of methylation erasure in early development and again in the germ line thus bringing development back to tabula rasa - totipotency. Clinically we applied our single cell molecular biology to pioneering experiments for preimplantation diagnosis of genetic disease. My colleagues and co-workers during these years in Anne's Mammalian Development Unit were Mary Harper, Asangla Ao, Andrew McMahon, Mandy Fosten, Susan Lindsay, Maurizio Zuccotti, Mark Grant, Michael Boubelik.and Cathy Holding. Anne always gave me a completely free rein and encouraged me in whatever I wanted to do. I still miss her.

Marilyn Monk
UCL Emeritus Professor of Molecular Embryology


Both the Anne McLaren and Marilyn Monk papers are available to readers through the British Library Explore Archive and Manuscripts catalogue. The Mclaren papers can be found at Add MS 83830-83981 and Add MS 89202 and the Monk papers are available at Add MS 89158.

17 March 2017

Old issues in new guises: Dame Anne McLaren and the embryo research debate

Add comment

Following the birth of the world’s first baby by In Vitro Fertilisation (IVF), Louise Brown, in 1978, the research on human embryos that had made this possible became the subject of scrutiny and unease from both the public and politicians. This led the government to task Dame Mary Warnock with the chairing of a committee consisting of medics, social workers, lawyers and clerics in 1982, to set out a guideline for the legislation on IVF and embryo research in the UK. The report was enacted in the 1990 Human Fertilisation and Embryology Act. One of the report’s most lasting and controversial recommendations was a limit on research on human embryos in vitro beyond fourteen-days – the so-called ’fourteen-day rule’.

McLaren-image-1
Detail of the letter to Anne McLaren inviting her to take part in the Warnock Committee. (1982). (Add MS 89202/8/1). Crown Copyright/estate of Anne McLaren.

This law has been in force for more than twenty-five years. For scientists, there had been no need to contest it, since scientists had not come close to culturing an embryo anywhere near to the fourteen-day limit. The equilibrium was only disrupted at the end of last year, when a research group at Cambridge University led by Magdalena Zernicka-Goetz claimed to have developed a method of culturing live human embryos for thirteen days, only stopping their experiment at this point to comply with the fourteen-day rule. This possibility has recharged the debates over the desirability of embryo research and the extent to which it should be regulated.

In the face of these reopened debates on the ethics of embryo research, it is important to understand the premises and arguments that shaped the current legislation. These arguments, at first glance, appear to be predominantly scientific.

Developmental biologist Dame Anne McLaren (1927-2007) was the only research scientist serving on the Warnock Committee, and played an important role in providing the lay-committee with a scientific understanding of the processes of embryo development that proved definitive in the committee’s efforts to convince ministers of the validity of the fourteen-day rule. McLaren made the case for the rule by arguing that the fourteenth day was a clearly distinguishable step towards individuation in the development of the embryo. Fourteen days, for example, sees the onset of gastrulation, a point at which the embryo can no longer divide into identical twins. Fourteen days also falls well before the beginnings of what will become the central nervous system, and so there is no chance that the embryo could experience pain. 

McLaren-image-2
Title page of Anne McLaren’s draft for ‘Comments on the use of donated eggs fertlilized specifically for research purposes’. (c. 1982). (Add MS 89202/8/1) Copyright the estate of Anne McLaren.

Yet, as Lady Warnock has stressed, fourteen days is by no means a landmark set in stone. McLaren could have made a well-substantiated scientific argument for a different cut-off point- the embryo, for example, is just as incapable of experiencing pain at twenty-eight days. As Lady Warnock stated at a 2016 Progress Educational Trust conference on the topic, it was merely important to set a time limit, to provide clarity through law, so that the public would feel reassured that research would not progress untethered. The fourteen-day rule did therefore not express a moral distinction for the human embryo based on biological facts, but emphasised a specific part of the biological process in order to make a practical compromise – as Warnock writes in the committee’s report: ‘What is legally permissible may be thought of as the minimum requirement for a tolerable society’ (1985, p.3). 

Understanding the arguments McLaren made in the 1980s will shed light on what is required of legislation today—that it should take into account the current political climate and public sentiment, perhaps before making arguments about the ethics of research based on biological facts. 

The Anne McLaren papers at the British Library consist of letters, notes, notebooks and offprints. There is currently one tranche (Add MS 83830-83981) available to readers through the British Library Explore Archives and Manuscripts catalogue with a second tranche (Add MS 89202) planned for release at the end of April 2017. Additionally one of Anne McLaren’s notebooks containing material from 1953 to 1956 (Add MS 83843) is on long-term display in the British Library’s Treasures Gallery. 

Anne McLaren’s scientific publications and books, along with an oral history interview conducted in February 2007, are available to readers via the British Library Explore catalogue.

 This post forms part of a series on our Science blog highlighting some of the British Library’s science collections as part of British Science Week 2017.

Posted by Marieke Bigg. Marieke is an MPhil student in sociology at the University of Cambridge and works under the supervision of Prof. Sarah Franklin. Marieke’s MPhil dissertation and PhD will both explore the contributions made by Dr Anne McLaren to the debate over human fertilisation and embryology in the 1980s.

15 March 2017

Local Heroes: John Maynard Smith: (1920-2004): A good "puzzle-solver" with an "accidental career"

Add comment

 

JMS-1965
John Maynard Smith c:1965. Copyright University of Sussex

Maynard Smith was born in London, though after his father’s death in 1928, the family moved to the countryside. There, Maynard Smith deepened his love for natural history – already manifest in his insistence to repeatedly visit the Zoo and Natural History Museum in London – while bird-watching and beetle-collecting during the holidays in Exmoor. His family was generally not scientifically inclined, and there were expectations for him to join his grandfather’s stockbroking firm. However, during one Sunday lunch he declared that he would not do so. What was he going to do then? Remembering a lecture on the building of the Sydney Harbour Bridge, he decided, rather spontaneously, to become an engineer. And so, after graduating from Eton in 1938, he went on to read engineering at Cambridge.

Maynard Smith is known for not having liked his time at boarding school very much – the atmosphere, he felt, was ‘really anti-intellectual’, ‘snobbish’ and ‘arrogant’ – but he credited Eton with teaching him mathematics and giving him the freedom to explore the natural sciences on his own, mostly by reading popular science books. Cambridge, in a way, did less for him academically than Eton. ‘This time, however, the fault was partly mine and partly Hitler’s. It was hard, in 1938, to take either academic work, or one’s own future, seriously.’ He joined the Communist Party, influenced by a visit of Nazi Germany in the summer of 1938 from which he returned ‘in a state of complete confusion, convinced that my pacifism was wrong’. Communists were those ‘saying we have got to unite and oppose Fascism’, and he spent more time being politically active than studying. Soon after joining, Maynard Smith met Sheila Matthew, his future wife, at a Communist Camp. They were to marry in 1941, making Maynard Smith one of the first married undergraduate students at Trinity College. Their first son, Anthony, would be born in 1944, their daughter Carol in 1946, and their youngest, Julian, in 1949.

In 1941, Maynard Smith graduated with a second-class honours degree in mechanical engineering. After graduation, he worked as an aircraft stressman which, importantly, ‘taught him to trust models, a lesson that would become fundamental in his work as a scientist.’ Moreover, ‘and for obvious reasons, Maynard Smith formed the valuable habit of not making mistakes in computations.’ However, when the war was over, he began to reconsider his career choices. He decided to return to his first love and started a second degree in zoology at University College London. Maynard Smith knew JBS Haldane was teaching there, whose work he had sought out already at Eton because several teachers seemed to particularly hate this man – so he couldn’t be ‘all bad’.

During his years as an undergraduate at UCL Maynard Smith became less and less active politically. He was much more involved in his studies than he ever was at Cambridge. In addition, Lysenkoism reached its peak in 1948. Trofim Lysenko was a Soviet biologist and Lamarckist supported by the Soviet government. Maynard Smith was not so much averse to Lysenkoism as ‘disgusted’ by the comrades who were ignorant of genetics but who were nonetheless telling him what to believe. He lost faith in the Communist Party, became disillusioned with communist politics and – though to a lesser extent – with Marxist philosophy. In 1956, after the Soviet Invasion of Hungary, he finally left the Party yet retained his leftist political outlook.

JMS-1984
John Maynard Smith c:1984. Copyright University of Sussex

In the year before his death, Animal Signals, his last book, co-written with David Harper, was published. The book was one of several; Maynard Smith published both textbooks and popular science – his ‘little Penguin’, The Theory of Evolution, was published as early as 1958. Indeed, he was convinced that science is a social activity: he had a ‘desire to embed discoveries in the discourse of a community as broad as possible.’ So next to writing books, reviews, and essays he also appeared on both radio and television.

The John Maynard Smith Archive at the British Library documents over half a century of John Maynard Smith's work as an evolutionary biologist, covering the years 1948 to 2004 (with an emphasis on the 1970s to 1990s). It contains letters, notes, computer printouts, draft manuscripts, lecture notes and offprints as well as artefacts and digital files. The archive is available to readers through the British Library Explore Archives and Manuscripts catalogue (Add MS 86569-86840), excepting the digital material which is in the process of being catalogued.

Maynard Smith's books and scientific papers, along with two interviews (one on camera), can be found via the British Library Explore catalogue.

This post forms part of a series on our Science and Untold Lives blogs highlighting some of the British Library’s science collections as part of British Science Week 2017.

 

Sources and Further Reading:

Charlesworth, B. and Harvey, P. (2005). John Maynard Smith. Biographical Memoirs of Fellows of the Royal Society 51, 254-265.

Kohn, M. (2004). A Reason for Everything: Natural Selection and the English Imagination. London: Faber and Faber, esp. pp.197-255.

‘Making it formal.’ (1988). In: Wolpert, L. and Richards, A. (eds.). A Passion for Science (pp.122-137). Oxford [etc.]: Oxford University Press.

Maynard Smith, J. (1985). In Haldane's Footsteps. In: Dewsbury, D.A. (ed.). Leaders in the Study of Animal Behavior: Autobiographical Perspectives (pp.347-354). Lewisburg, PA: Bucknell University Press.

Posted by Helen Piel. Helen Piel is a PhD student at the University of Leeds and the British Library. She is part of the AHRC's Collaborative Doctoral Partnership scheme and working on the John Maynard Smith Archive, exploring the working life of a British evolutionary biologist in the post-war period.

03 February 2017

HPC & Big Data

Add comment

Big-data-1667184_1280
Matt and Philip attended the HPC & Big Data conference on Wednesday 1st February. This is an annual one-day conference on the uses of high-performance computing and especially on big data. “Big data” is used widely to mean very large collections of data in science, social science, and business.

There were some very interesting presentations over the day. Anthony Lee from our friends the Turing Institute discussed the Institute’s plans for the future and the potential of big data in general. The increasing amounts of data being created in “big science” scientific experiments and the world at large mean that the problems of research have shifted from data collection being the hard part to processing capabilities being overwhelmed by the sheer volume of data.

A presentation from the Earlham Institute and Verne Global revealed that Iceland could become a centre for high-performance computing in the future, thanks to its combination of cheap, green electricity from hydroelectric and geothermal power, high-bandwidth data links to other continents, and a cool climate which reduces the need for active cooling of equipment. HPC worldwide now consumes more energy than the entire airline industry and whole countries of the size and development level of Italy and Spain. Seljalandsfoss-1207956_1280

Dave Underwood of the Met Office described the Met Office’s acquisition of the largest HPC computer in Europe. He also pointed out the extreme male-biased demographic of the event, something that both Matt and Philip had noticed (although we admit, one of our female team members could have gone instead of Philip).

Luciano Floridi of Oxford University discussed the ethical issues of Big Data and pointed out that as intangibles become a greater portion of companies’ value, so scandal becomes more damaging to them. Current controversies involving behaviour on the internet suggest that moral principles of security, privacy, and freedom of speech may be increasingly conflicting with one another, leading to difficult questions of how to balance them.

JISC gave a presentation on their actual and planned shared HPC data centres, and invited representatives from our friends and neighbours at the Crick Institute, and the Wellcome Trust’s Sanger Institute on their IT plans. Alison Davis from Crick pointed out that an under-rated problem for academic IT departments is individual researchers’ desire to carry huge quantities of digital data with them when they move institutions, causing extra demand on storage and raising difficult issues of ownership.

Finally, Richard Self of the University of Derby gave an illuminating presentation on the potential pitfalls of “big data” in social science and business, such as the fact that the size of a sample does not guarantee that it is representative of the whole population, the probability of finding apparent correlations in a large sample that are created by chance and not causation, and the lack of guaranteed veracity. (For example, in one investigation 14% of geographical locations from mobile phone data were 65km or more out of place.)

Philip Eagle, Content Expert - STM

22 November 2016

Stephen Hales: Reverend, Researcher, Reformer

Add comment

In the final episode of “Treasures of the British Library” series (tonight at 9pm on Sky Arts) we explored the ancestry of trumpeter Alison Balsom. Alison is descended from the 18th century clergyman and polymath Stephen Hales (1677-1761) and she was keen to find out more about this remarkable man.

The first item I showed Alison was Hales’ seminal work “Vegetable Staticks” or to give it its full title “Vegetable Staticks: or an account of some statical experiments on the sap in vegetables: being an essay towards a natural history of vegetation”. Alas, it was not an age of punchy titles. Hales was interested in understanding how plants give off and take up water and in this book he outlines the many meticulous experiments that seek to understand these processes. Hales even invented the ‘pneumatic trough’ (see below) and used this to collect gases given off by plants. He didn’t however analyse the composition of this gas, since at that time air was understood to be a pure element. It was not until many years later that Joseph Priestley and Antoine Lavoisier discovered oxygen was a component of air, making use of Hales’ pneumatic trough to collect, analyse and separate gases.


Vegetable Staticks Stephen Hales p262
Stephen Hales' pneumatic trough. From Vegetable Staticks p260


Some of Hales’ conclusions were remarkably prescient outlining the process of photosynthesis many years before its chemical basis was elucidated. One key quote draws parallels between the function of the leaves of plants with animals' lungs.

Vegetable Staticks Stephen Hales p326
From Vegetable Staticks. p326

 

Two pages later Hales also postulates that light might be a form of energy which is needed by the plant to survive.

Vegetable Staticks Stephen Hales p327
From Vegetable Staticks. p327

 

Alison and I then went on to look at Hales’ “A Description of Ventilators”. One of Hale’s social projects was the invention of ventilating systems for ships and prisons where overcrowding meant that stale air and unhygienic conditions were rife. Hales’ invention was essentially a giant set of bellows which removed the noxious air. The ventilator was initially used to dry grain for preservation but was eventually rolled out to ships, hospitals and prisons where it saved many lives.



Last but not least we came to Reverend Hales’ “A Friendly Admonition to Drinkers of Gin, Brandy and Other Spirituous liquors” which was published anonymously in 1751. Hales was a strong supporter of the Gin Acts of the early 18th century where gin sales were subject to high taxes in an effort to reduce consumption. In the tract he outlines the many physiological consequences of consuming as he called them, “most intoxicating and baneful spirits”. Readers are warned that liquors ‘frequently cause those Obstructions and Stoppages in the Liver, which occasion the Jaundice, Dropsy and many other fatal diseases” and “impair the mind as much as the body”.  However the message was as much moral as it was medical with Hales condemning drunkards and the great sin of drinking throughout.

A friendly admonition Stephen Hales
Stephen Hales' A Friendly Admonition... Title page and p25

 

Although Hales trained as a clergyman and did not have any formal scientific training his achievements rival many of the well-known scientists of the day. Despite this Hales does not tend to feature alongside famous scientists in the history books so we were pleased to be able to shed some light on this interesting character as part of the Treasures of the British Library series.

Katie Howe

With thanks to Tanya Kirk and Duncan Heyes for help sourcing Stephen Hales material from the British Library collections.

27 October 2016

Replace, Reduce, Refine: Animals in Research.

Add comment

PhD placement student Mandy Kleinsorge looks back on our most recent TalkScience@BL event.

TalkScience@BL - Replace, Reduce, Refine: Animals in Research

The use of animals in research is as controversial as ever. It is well-known that animal research has brought about some great discoveries in the past1, such as the development of Herceptin and Tamoxifen for the treatment of breast cancer or the discovery of bronchodilators to treat the symptoms of asthma. Today, the UK regulations for research involving animals are among the tightest in the world. In consequence, it is illegal in the UK (and in Europe) to use an animal in research if there is a viable non-animal alternative2. Despite this, the number of experimental procedures on animals in the UK has been steadily increasing over the last years3 and funding of non-animal research accounted for only 0.036 % of the UK national R&D science expenditure4 (2011). Apparently, three quarters of Britons agreed that there needs to be more research carried out into alternatives to animal experimentation5 (2012).

On 13th October, we invited experts in the field to the British Library to publicly discuss the current state of alternatives to animals, as well as the efforts that are made to improve the welfare of animals that are still needed in scientific research. The concept of reducing or even substituting animals in scientific experiments (or at least improving the conditions under which these experiments are conducted) is not new. In 1959, Russell and Burch established the principles of the Three Rs (Replacement, Reduction and Refinement)6 which came to be EU-wide guidelines for the more ethical use – or non-use – of animals in research. Today, a number of organisations campaign for openness and education as to why animals are needed in some areas of research, but also as to where we might not actually need them anymore. One of those is the National Centre for the Replacement, Refinement & Reduction of Animals in Research (NC3Rs) who we collaborated with on our TalkScience event ‘Replace, Reduce, Refine: Animals in Research’. The event was chaired by Stephen Holgate, Professor of Medicine at the University of Southampton and Board Chair of the NC3Rs.

Taking a closer look at Robin's amoeba.
Taking a closer look at Robin's amoeba.

The first speaker of the evening was Robin Williams (Head of the Biomedical Sciences Centre at Royal Holloway, University of London). Robin uses Dictyostelium, a social amoeba and therefore non-animal model, to conduct research into neurological diseases like Alzheimer’s. He even brought some amoeba for the audience to look at! Besides bringing awareness to the fact that this organism can actually represent a viable alternative to animal experimentation, he also drew attention to two big problems that researchers using animal alternatives are facing. Acquiring funding and publishing scientific papers are the most important tasks of senior researchers and both of these are complicated by a limited acceptance of non-animal models. Although 3Rs practice is increasingly advocated in the UK, the peer review process regulating funding and publication of research projects is a global endeavour. Robin therefore called for a shift in attitude towards alternatives to animals on a world-wide level.

Our second speaker, Sally Robinson (Head of Laboratory Animal Science UK at AstraZeneca), shed some light into the use of animals in pharmaceutical research. Sally stressed the importance of using the most appropriate model – animal or non-animal – to answer the scientific question. This is not as trivial as it sounds, and is key to obtaining meaningful results and minimising use of animals where possible. The welfare of the animals used in drug development is equally important, as Sally illustrated with the refinement of dog housing. By optimising pen design7, the welfare of laboratory dogs can be drastically improved, and so can the quality of scientific research they’re involved in. Furthermore, Sally herself had a leading role in the challenging of the regulatory requirement for acute toxicity tests in drug development8, which ultimately changed international legislative guidance and reduced the number of animals needed in pharmaceutical research.

Our panel: Stephen Holgate, Robin Williams, Sally Robinson and Robin Lovell-Badge.
Our panel: Stephen Holgate, Robin Williams, Sally Robinson and Robin Lovell-Badge.

Our last speaker was Robin Lovell-Badge (Head of the Division of Stem Cell Biology and Developmental Genetics at the Francis Crick Institute). He opened his talk by endorsing openness in animal research. This is a welcome and necessary trend of the past few years – after animal research had been conducted behind closed doors in the UK for decades for fear of violent actions. The ‘Concordat on Openness on Animal Research’9 was initiated in 2012 and has been signed by 107 UK organisations to date. Robin explained which animals the newly built Francis Crick Institute will work with and why, and how Home Office guidelines on animal research have helped inform the design of their state-of-the-art facilities. He also mentioned some of their work that doesn’t involve animals, like research using induced pluripotent stem (iPS) cells. These iPS cells resemble embryonic stem cells and can be generated from any living cell of a human donor. They are able to differentiate into virtually every cell type of the body, presenting an alternative source of human tissue for drug screenings and the modelling of diseases10. This fairly new technology might even be useful as an alternative to animal experiments in the future.

In discussion with the audience it became clear that the UK is leading the world in the realisation of the 3Rs. However, there is still room for much improvement in furthering the 3Rs. While better experimental design using robust biostatistics and in-depth training of scientists handling animals is vital, increased acceptance of negative data would avoid unnecessary duplication of experiments using animals.

The discussion continued after the event.
The discussion continued after the event.

When asked whether an animal-free research in the immediate future was possible, the panel agreed that it wasn’t. A lot more research into alternatives as well as a change in people’s mindsets is needed beforehand. But how do we exert pressure for this change? Do we need animal activists to do this, one audience member asked. Good question. It is definitely necessary to bring different types of people together to have more balanced and open discussions about this emotive topic. So, thanks to the speakers and the audience of this TalkScience event for joining us to disuss this important issue.

Further reading:

1 Understanding Animal Research. Forty reasons why we need animals in research.
2 Animals in Science Committee. Consolidated version of the Animals Scientific Procedures Act 1986.
3 Home Office. Statistics of scientific procedures on living animals, Great Britain 2015.
4 Taylor, K. EU member state government contribution to alternative methods.
5 Ipsos MORI. Views on the use of animals in scientific research.
6 Russell, WMS and Burch, RL. The principles of humane experimental technique.
7 Refining Dog Care. Dog unit and home pen design.
8 Robinson, S et al. A European pharmaceutical company initiative challenging the regulatory requirement for acute toxicity studies in pharmaceutical drug development.
9 Understanding Animal Research. Concordat on Openness on Animal Research.
10 Takahashi, K and Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency.

 

21 October 2016

Britain's first nose job

Add comment

Science Content Expert Philip Eagle explores the first plastic surgery operation in Britain.

On 22nd October 1814, Joseph Constantine Carpue (1764-1846) performed the first plastic surgery operation in Britain, reconstructing the nose of an army officer whose nose had collapsed due to long-term mercury treatments for a liver complaint. The operation lasted fifteen minutes, with no anaesthetic. Three days later, the patient’s dressing was removed, and on observing the successful results a friend of the patient exclaimed: “My God, there is a nose!”

Illustration by Charles Turner from Carpue's book
Illustration by Charles Turner from Carpue’s book, digitised by the Wellcome Library and released under Creative Commons CC BY 4.0 licence.

Carpue was inspired to perform the operation after reading reports of successful nasal reconstructions in India, using skin flaps from the cheek or forehead. The most famous of these was a 1794 report in the Gentleman’s Magazine, describing the reconstruction of the nose of a man named Cowasjee. Cowasjee had been mutilated by the forces of Tipu Sultan during the Third Anglo-Mysore War for working for the British.

Broadside on Cowasjee's case published by James Wales
Cowasjee’s case published by James Wales, digitised by the Wellcome Library and released under CC BY 4.0 licence.

Nasal reconstructions had been practised as a relatively routine procedure in India for centuries. This was driven by the common use of nasal mutilation in India as a means of punishment or private vengeance for various forms of immorality. The procedures are described in two well-known early Indian medical works, the Suśruta Saṃhitā, thought to date to the middle of the first millennium BCE, and the Aṣṭāṅgahṛdayasaṃhitā, believed to date from the sixth century CE*.  By the nineteenth century the technique had been handed down through separate families in three different parts of India.

Rhinoplasty by transfer of skin flaps from other body parts had also been practiced in Italy in the sixteenth century, most famously by the Bolognese surgeon Gaspare Tagliacozzi (1545-1599). However, it had declined following Tagliacozzi’s death, due to a mixture of professional politics in Italy, misconceptions about the nature of the procedure, and moral disapproval of an operation that was often performed to repair damage done by syphilis. (Even in his own book, Carpue felt at pains to insist that the mercuric treatment that had damaged his first patient’s nose was not for syphilis.)

Carpue published a book in 1816 on the subject, discussing his predecessors and inspiration and then describing two cases of nasal reconstruction that he had performed. The second was on a named patient, a Captain Latham whose nose had been injured during the Battle of Almuera, in the Peninsular War. Carpue’s work inspired further practice by the German surgeon Carl Ferdinand von Gräfe, who is credited with coining the term “plastic surgery”.

Philip Eagle

With thanks to Pasquale Manzo (Curator, Sanskrit Collections) for information on British Library holdings of ancient Indian medical texts.

Further reading:

 

12 August 2016

“Like light shining in a dark place”: Florence Nightingale and William Farr

Add comment

On the anniversary of Florence Nightingale’s death, Katie Howe explores her scientific legacy.

Perhaps best known as ‘the lady with the lamp’ Florence Nightingale was also an accomplished scientist and social reformer.

In 1854, with Britain in the midst of the Crimean conflict, Nightingale was appointed to lead a party of nurses to a military hospital in Scutari (in modern day Istanbul). When she arrived she discovered a lack of coordination between hospitals and no standardised or consistent reporting of mortality rates and causes of death. Nightingale set to work gathering extensive information on all aspects of hospital care.

After returning from the Crimea, Nightingale used her new found celebrity status and personal connections to enlist the help of the eminent Victorian epidemiologist and statistician William Farr in analysing the vast quantities of data she had collected.

Their correspondence, which is held at the British Library, reveals a respectful professional relationship, with Farr often signing off,

“I have the honour to be your very faithful servant.”

In May 1857, when Nightingale sent Farr the death rates calculated from her Crimean war data, he replied,

“Dear Miss Nightingale. I have read with much profit your admirable observations. It is like light shining in a dark place. You must when you have completed your task - give some preliminary explanation - for the sake of the ignorant reader.” (Add MS 43398 f.10)

Add MS 43398 f.10
Add MS 43398 f.10


So Florence Nightingale was not only the literal ‘lady with the lamp’, but her statistical work also illuminated worrying trends in army mortality rates.

After receiving further data from Nightingale in November the same year, Farr wrote:

“This speech is the best that was ever written on diagrams or on the Army.”  (Add MS 43398 f.37)

 

Add MS 43398 f.37
Add MS 43398 f.37


As a result of this productive collaboration with Farr, Nightingale learned that the majority of deaths in the Crimean War were not due to battle wounds but to preventable diseases like typhus and cholera.

To get this important message across to high-ranking government officials who had no statistical training, Nightingale knew she needed a powerful visual message. She represented the cause of death in a revolutionary new way. Rather than using a table or list as was common at the time she created this striking rose diagram. 

Each of the 12 wedges represents a month of the year and changes in the wedges’ colour reveal changes over time. At a glance it was easy to see the deaths from epidemic diseases (blue) far outweighed deaths from battlefield wounds (red) and deaths from other causes such as accidents or frostbite (black).  After sanitary reforms such as the introduction of basic sanitation, hand washing and ventilation, deaths dropped dramatically. Compare the right rose (April 1854-March 1855) with left rose (April 1855-March 1856).

Rose diagram
Florence Nightingale’s Rose diagram “Notes on matters, affecting the health, efficiency and hospital administration of the British Army. London, 1858”. C.194.b.297

 

Her rose diagram was so easy to understand it was widely republished. Ultimately this striking visualisation and the accompanying report convinced the government that deaths were preventable if sanitation reforms were implemented in military hospitals. Nightingale’s work provided a catalyst for change, driving better and cleaner hospitals and the establishment of a new army statistics department to improve healthcare.

08 August 2016

Local heroes: “Without the least sense of pain or the movement of a muscle”

Add comment

As part of a new series exploring local heroes in the Knowledge Quarter area, Philip Eagle reveals the curious history of anesthesia. 

Francis_Boott
Francis Boott. Image: Public domain

A short bus ride away from the British Library, at 52 Gower Street, a blue plaque records the site of the first operation under general anaesthesia in the UK. On 19th December 1846, the dentist James Robinson performed a tooth extraction on a Miss Lonsdale. At the time, 52 Gower Street was the home of Dr. Francis Boott, an American expatriate physician who had heard from friends of the development of diethyl ether as an anaesthetic by William Morton in Boston.

Robinson lived further down the street towards the West End, at 14 Gower Street, where he has his own blue plaque. As well as his work on anaesthetics, he was the author of The Surgical and Mechanical Treatment of the Teeth, claimed to be the first British dental textbook of real scientific quality. He would later become dentist to Prince Albert, and be significantly involved in the creation of the College of Dentistry and the National Dental Hospital.

In a letter to the Lancet, Boott described the operation with the following words:

“I beg to add, that on Saturday, the 19th, a firmly fixed molar tooth was extracted in my study from Miss Lonsdale, by Mr. Robinson, in the presence of my wife, two of my daughters, and myself, without the least sense of pain, or the movement of a muscle”

In a book published later in the year, Robinson himself stated that the patient was only thirteen years old, and reported that:

“She had not felt the slightest pain, but had been dreaming of the country”.

Anaesthesia blue plaques
Blue plaque images by Spudgun67 CC BY-SA 4.0

Subsequently in the nineteenth century, diethyl ether was largely replaced as a general anaesthetic in the UK by chloroform, which was less irritating to the throat and lungs and less likely to have the initially stimulant effect that ether had on some patients. Since the mid twentieth century, the most important inhaled anaesthetics have been the fluorinated alkane halothane and fluorinated ethers such as sevoflurane and desflurane, which are pharmacologically safer and more effective, and also physically safer due to their lower flammability.

Philip Eagle, STM Content Expert

Sources and further reading:

  • Anesthesiology, Science, Technology & Business (P) GY 30-E(4), since 2012 available electronically through Ovid in the Reading Rooms
  • Boott, F. Surgical operations performed during insensibility produced by the inhalation of sulphuric ether*, Lancet, 1847, 49 (1218): 5-8. General Reference Collection P.P.2787. Also available electronically through Science Direct in the Reading Rooms. * Note for chemists: “sulphuric ether” was a common name at the time for diethyl ether, due to its preparation by reacting ethanol with sulphuric acid. The chemical itself did not contain any sulphur.
  • British Journal of Anaesthesia, Science, Technology & Business (P) GY 30-E(2), since 2014 available electronically through OUP in the Reading Rooms
  • Ellis, R H. James Robinson: England’s true pioneer of anaesthesia. In The History of Anesthesia, Third International Symposium, Proceedings, 1992: 153-164. Document Supply 4317.854000. Available online.
  • Johnson, K B. Clinical pharmacology for anesthesiology. London: McGraw-Hill Education, 2015. Science, Technology & Business (B) 615.781
  • Pain, Document Supply 6333.795000, also available electronically through Ovid in the Reading Rooms
  • Robinson, J. Treatise on the inhalation of the vapour of ether for the prevention of pain in surgical operations, etc. London: Webster & Co. 1847. General Reference Collection 7481.cc.6
  • Robinson, J. The surgical and mechanical treatment of the teeth: including dental mechanics. London, 1846. General Reference Collection 1186.c.46 and RB.23.a.27503.
  • Shafer, S L and others. Stoelting’s pharmacology and physiology in anesthetic practice. Philadelphia: Lippincott Williams & Wilkins, 2015. Science, Technology & Business (B) 615.781.
  • Snow, S J. Blessed days of anaesthesia. New York: Oxford University Press. 2008. General Reference Collection YC.2009.a.15022

11 July 2016

Food for Thought: Food Technology resources at the British Library

Add comment

Do you need to explore molecular gastronomy or research the food industry or trends in the beverage business? Are you concerned with global food security, safety  and supply? Are genetically modified foods a threat to our health and ecosystems or a benefit of biological research? What are the markets for different types of food and what is the impact of European regulation on these markets? These questions and many more can be explored by undertaking research at the British Library.

20365094639_f63c42c79f_z
Image from Flickr

Our science reading rooms contain a strong food technology collection including books, journals, both print and electronic  plus discovery tools such as the Food Science and Technology Abstracts (FSTA) database.

Electronic resources for research: our full set of databases are listed here and are accessible to registered readers on-site.

Accessing a world of knowledge: reader registration and pre-registration is quick and easy as outlined on our web site.

Explore the scope and depth of the British Library collections: digital books include topics such as “Developing food products for consumers with specific dietary needs" edited by Steve Osborn, Wayne Morley, Oxford, Woodhead Publishing, 2016, touching on the health aspects and books on wider cultural issues include examples such as “On the Town in New York : The Landmark History of Eating, Drinking, and Entertainments from the American Revolution to the Food Revolution" by Michael Batterberry and  Ariane Batterberry, 2016.

14781536172_c0691d8d7e_z
Image from Flickr

Inter-disciplinary and multi-format collections: apart from the multidisciplinary links to the business, humanities and cultural aspects of food, the science collections cover packaging, preservation, agricultural production, food processing, microbiology, engineering and nutrition.

We hold the publications of the major food sector organisation such as the Institute of Food Science and Technology’s  (IFST)  “International Journal of Food Science and Technology" and the European Federation of Food Science and Technology’s (EFFST) journal entitled “Innovative Food Science and Emerging Technologies”.

The British Library  offers a wide variety of formats and resources including the oral history food collections which have recently been made available online. These cover the history of food production from the start of the 20th Century and are a fantastic resource for food researchers and historians.

448px-PreservedFood1
Image from Wikimedia

Our collection of historical patents are also a rich resource for understanding food technology and innovation. We offer amongst many other patent databases, the British granted patent specifications database, a  document store that contains pdf copies of British patents from 1617-1899, and PDF copies of granted British patents from 1st January 2007. Although this database is searchable only by patent number, the reference staff can help with subject access using print patent indexes and up to five specifications per week can be downloaded for personal research. See the Business and IP Centre website for more information.

17802853093_fb93d89e0f_m
Image from Flickr

Sources of research in food standards and regulations can be found at the British Library where we collect these UK national publications, e.g. UK Food Standards Agency  and international publications of key organisations such as the Food and Agricultural Organisation of the United Nations in our social science reading rooms.

Whet your appetite by visiting the British Library’s collections of food related resources, including recipes, it’s history, science and nutritional benefits.   

Paul Allchin

Science Content Specialist