THE BRITISH LIBRARY

Science blog

58 posts categorized "Engagement"

30 November 2017

Digital preservation and the Anne McLaren Papers

Add comment

IDPD17_Logo_small
Today on International Digital Preservation Day we present a guest-post by Claire Mosier, Museum Librarian and Historian at American Museum of Western Art: The Anschutz Collection, concerning the digital files in the Anne McLaren Supplementary Papers (Add MS 89202) which have just been made available to researchers. As an MA student Claire worked as an intern at the British Library in 2015 helping to process digital material.

 

AM30NovImage 1
Dame Anne McLaren. Copyright James Brabazon

 
The developmental biologist Dame Anne McLaren was a great proponent of scientists sharing their work with the general public, and gave many presentations to scientists as well as the general public. Some of the notes, drafts, and finished products of these presentations are on paper, and others are in digital formats. The digital files of the Anne McLaren Supplementary Papers are comprised mostly of PowerPoint presentations and images. Digital records are more of a challenge to access, and give readers access to, as they are not always readily readable in their native format. This leads to unique challenges in determining and making available the content. 
 

AM30NovImage 2
‘HongKong2003Ethics.ppt’ Page from the presentation ‘Ethical, Legal and Social Considerations of Stem Cell Research’, 2003, (Add MS 89202/12/16). Copyright the estate of Anne McLaren.

 Throughout her career, McLaren gave presentations not only for educating others about her own work, but also on the social and ethical issues of scientific research. Many of her PowerPoint files are from presentations between 2002 and 2006 and cover the ethical, legal, moral, and social implications around stem cell therapy. These topics are addressed in the 2003 presentation ‘Ethical, Legal, and Social Considerations of Stem Cell Research’ (Add MS 89202/12/16), which briefly covers the historic and current stem cell research and legislation affecting it in different countries. A presentation from 2006 ‘Ethics and Science
of Stem Cell Research’ (Add MS 89202/12/160) goes into more detail, breaking ethical concerns into categories of personal, research, and social ethics. As seen in these presentations and others, Anne McLaren tried to present material in a way that would make sense to her audience, some of the presentations being introductions to a concept for the more general public, and others being very detailed on a narrower subject for those in scientific professions. 

AM30NovImage 3
‘Pugwash 2006’ Page from the presentation ‘When is an Embryo not an Embryo’, 2006, (Add MS 89202/12/163). Copyright the estate of Anne McLaren.

 From looking at her PowerPoint documents it seems McLaren’s goals were to educate her audience on scientific ideas and encourage them to think critically, whether they were scientists themselves or not. However, this is hard to confirm, as the PowerPoints are only partial artefacts of her presentations, and what she said during those presentations is not captured in the collection. While she did sometimes present her own views in the slides, she presented other viewpoints as well. This is seen in the presentation for the 2006 Pugwash Conference (Add MS 89202/12/163) titled ‘When is an Embryo not an Embryo’ which presents semantic, legislative, and scientific definitions of the term embryo before a slide reveals McLaren’s own views, then goes back to legislative definitions before the slideshow ends. The Pugwash Conferences on Science and World Affairs were created to ensure the peaceful application of scientific advances, and McLaren was a council member for many years.

***

Both the newly released Anne McLaren Supplementary Papers (Add MS 89202), along with the first tranche of McLaren’s papers (Add MS 83830-83981) are available to researchers via the British Library Explore Archives and Manuscripts Catalogue. Additionally one of Anne McLaren’s notebooks containing material from 1965 to 1968 (Add MS 83845) is on long-term display in the British Library’s Treasures Gallery.

10 November 2017

Using science to build international relations: a short introduction to science diplomacy

Add comment

Today, on World Science Day for Peace and Development, scientists and policymakers attending the World Science Forum in Jordan are discussing the role science can play in nurturing diplomatic relations.

Science diplomacy is an umbrella term for a wide range of activities in which science and technology are leveraged to foster ties between nations. Governments are aware that collaborating with international partners to achieve scientific goals can further their national interests. Consequently they are paying increasing attention to the idea of science as a diplomatic tool.

How is it practised? On a bilateral level diplomats co-ordinate scientific agreements which commit signatories to pooling resources by sharing knowledge and collaborating on research projects. Such agreements can open up opportunities for product development and trade deals, and are becoming an important part of the UK’s strategy to expand its research and innovation horizons post-Brexit.

Jo Johnson Ruth Garber
Jo Johnson (UK Minister of State for Universities, Science, Research and Innovation) and Judith G. Garber (U.S. Acting Assistant Secretary of State for Oceans and International Environmental and Scientific Affairs) signed the first U.S.-UK Science and Technology Agreement on 20 September 2017 in Washington, D.C. The UK is putting £65 million into the Deep Underground Neutrino Experiment (DUNE). Photo credit: STFC/FCO

Science is a global enterprise in which international collaboration is the norm. In particular multinational teams are needed to run large experimental facilities such as the European Organization for Nuclear Research (CERN) which are beyond the scope of individual countries. One of the by-products of these neutral working environments is science diplomacy. Scientists can develop long-lasting, cross-cultural relationships that sometimes help to bridge difficult political situations from the bottom up. Proposals for these huge infrastructure projects are often driven by an incentive to stimulate co-operation as much as for a need to build scientific capacity.

This was the case for the SESAME synchrotron which opened earlier this year in Jordan. The synchrotron’s powerful light source can be used to study the properties of a range of different materials, attracting researchers from across the Middle East, including Iranians, Israelis and Palestinians.

SESAME construction
Countries from across the Middle East have come together to build SESAME. Photo credit: SESAME

Science diplomacy also comes into play in resolving sensitive international disputes. When negotiations to limit Iran’s nuclear programme stalled, credit for their successful conclusion went to the two physicists, one Iranian and one US, who worked out the scientific details of the 2015 deal.

Four negotiators
The scientists and Ministers who negotiated the Iran deal: US Energy Secretary Ernest Moniz, US Secretary of State John Kerry, Iranian Foreign Minister Javad Zarif and Vice President of the Iranian Atomic Energy Organization Dr Ali Akbar Salehi. Photo credit: U.S. Mission Photo/Eric Bridiers

Scientists and diplomats also work together in addressing global issues such as climate change, antimicrobial resistance or cross-border public health crises. Using scientific evidence is fundamental when negotiating coherent responses to shared challenges, and government science advisers are seen as a key mechanism in getting science into policymaking. Gradually foreign ministries around the world are appointing their own science advisers to channel scientific research into the work of their departments.

Various strategic funding programmes, some of which focus on meeting the UN’s sustainable development goals, support the aims of science diplomacy. These international collaborative projects generate the necessary evidence to inform policymaking while also stimulating partnerships that foster trust between nations.

Climate ready rice Newton Prize
The Newton Fund project ‘Climate Ready Rice’ is being conducted by scientists from Sheffield University in the UK, Kasetsart University in Thailand and the International Rice Research Institute (IRRI) in the Philippines.Photo credit: IRRI

It is unclear how to evaluate the impact of science diplomacy activities, but participants agree that they only work when based around excellent science that generates mutual benefits.

Emmeline Ledgerwood is an AHRC collaborative student with the British Library Oral History department and the University of Leicester. She is preparing a policy briefing on science diplomacy as part of an AHRC-funded policy fellowship at the Parliamentary Office of Science & Technology (POST). The briefing will be published by POST in December 2017.

POST runs several fellowship schemes with Research Councils, learned societies and charities, through which PhD students are sponsored to spend (usually) three months working at POST. Some fellowships are also open to postdoctoral researchers in academia and industry.  

You can follow @EmmeLedgerwood and @POST_UK on Twitter.

The statements and opinions expressed in this piece are those of the author alone, not of the Parliamentary Office of Science and Technology.

30 June 2017

GREATforInspiration kicks off

Add comment

GREATforImagination logoThis week saw the launch of the GREATforImagination campaign, part of the GREAT Britain campaign to promote the UK as a place to buy from, invest in, and study in. GREATforImagination celebrates the 400th anniversary year of the publication of the first British patent to be retrospectively identified in the 19th century, after the foundation of the Patent Office (now the Intellectual Property Office), as a patent for an invention in the modern sense.

GREAT Britain asked us, as the holder's of Britain's historic patent collection, to come up with some key historical British patents for the different industries that they cover each week, which they'll be promoting one invention from per weekday as the campaign continues. We're tweeting each day with a link to the GREATforImagination release on each invention, and a link to the patent if it's available free online on Espacenet. The inventions are a mix of the historical ones and new ones from the cutting edge of British industrial innovation. The first week deals with clothing and cinema, and next week will cover technological developments from curiosity-driven science.

When GREAT Britain first asked us to start coming up with patents, we searched history books while they consulted industrial sources, to find inventions that were either a success at the time, or anticipated technologies that became important in the future once the world had caught up with them. There won't be any "weird patents" or "stupid patents" here, but ideas that stood the test of time.

So keep watching our Twitter and the GREATforImagination Instagram for GREAT British inventions historical and modern.

17 March 2017

Old issues in new guises: Dame Anne McLaren and the embryo research debate

Add comment

Following the birth of the world’s first baby by In Vitro Fertilisation (IVF), Louise Brown, in 1978, the research on human embryos that had made this possible became the subject of scrutiny and unease from both the public and politicians. This led the government to task Dame Mary Warnock with the chairing of a committee consisting of medics, social workers, lawyers and clerics in 1982, to set out a guideline for the legislation on IVF and embryo research in the UK. The report was enacted in the 1990 Human Fertilisation and Embryology Act. One of the report’s most lasting and controversial recommendations was a limit on research on human embryos in vitro beyond fourteen-days – the so-called ’fourteen-day rule’.

McLaren-image-1
Detail of the letter to Anne McLaren inviting her to take part in the Warnock Committee. (1982). (Add MS 89202/8/1). Crown Copyright/estate of Anne McLaren.

This law has been in force for more than twenty-five years. For scientists, there had been no need to contest it, since scientists had not come close to culturing an embryo anywhere near to the fourteen-day limit. The equilibrium was only disrupted at the end of last year, when a research group at Cambridge University led by Magdalena Zernicka-Goetz claimed to have developed a method of culturing live human embryos for thirteen days, only stopping their experiment at this point to comply with the fourteen-day rule. This possibility has recharged the debates over the desirability of embryo research and the extent to which it should be regulated.

In the face of these reopened debates on the ethics of embryo research, it is important to understand the premises and arguments that shaped the current legislation. These arguments, at first glance, appear to be predominantly scientific.

Developmental biologist Dame Anne McLaren (1927-2007) was the only research scientist serving on the Warnock Committee, and played an important role in providing the lay-committee with a scientific understanding of the processes of embryo development that proved definitive in the committee’s efforts to convince ministers of the validity of the fourteen-day rule. McLaren made the case for the rule by arguing that the fourteenth day was a clearly distinguishable step towards individuation in the development of the embryo. Fourteen days, for example, sees the onset of gastrulation, a point at which the embryo can no longer divide into identical twins. Fourteen days also falls well before the beginnings of what will become the central nervous system, and so there is no chance that the embryo could experience pain. 

McLaren-image-2
Title page of Anne McLaren’s draft for ‘Comments on the use of donated eggs fertlilized specifically for research purposes’. (c. 1982). (Add MS 89202/8/1) Copyright the estate of Anne McLaren.

Yet, as Lady Warnock has stressed, fourteen days is by no means a landmark set in stone. McLaren could have made a well-substantiated scientific argument for a different cut-off point- the embryo, for example, is just as incapable of experiencing pain at twenty-eight days. As Lady Warnock stated at a 2016 Progress Educational Trust conference on the topic, it was merely important to set a time limit, to provide clarity through law, so that the public would feel reassured that research would not progress untethered. The fourteen-day rule did therefore not express a moral distinction for the human embryo based on biological facts, but emphasised a specific part of the biological process in order to make a practical compromise – as Warnock writes in the committee’s report: ‘What is legally permissible may be thought of as the minimum requirement for a tolerable society’ (1985, p.3). 

Understanding the arguments McLaren made in the 1980s will shed light on what is required of legislation today—that it should take into account the current political climate and public sentiment, perhaps before making arguments about the ethics of research based on biological facts. 

The Anne McLaren papers at the British Library consist of letters, notes, notebooks and offprints. There is currently one tranche (Add MS 83830-83981) available to readers through the British Library Explore Archives and Manuscripts catalogue with a second tranche (Add MS 89202) planned for release at the end of April 2017. Additionally one of Anne McLaren’s notebooks containing material from 1953 to 1956 (Add MS 83843) is on long-term display in the British Library’s Treasures Gallery. 

Anne McLaren’s scientific publications and books, along with an oral history interview conducted in February 2007, are available to readers via the British Library Explore catalogue.

 This post forms part of a series on our Science blog highlighting some of the British Library’s science collections as part of British Science Week 2017.

Posted by Marieke Bigg. Marieke is an MPhil student in sociology at the University of Cambridge and works under the supervision of Prof. Sarah Franklin. Marieke’s MPhil dissertation and PhD will both explore the contributions made by Dr Anne McLaren to the debate over human fertilisation and embryology in the 1980s.

15 March 2017

Local Heroes: John Maynard Smith: (1920-2004): A good "puzzle-solver" with an "accidental career"

Add comment

 

JMS-1965
John Maynard Smith c:1965. Copyright University of Sussex

Maynard Smith was born in London, though after his father’s death in 1928, the family moved to the countryside. There, Maynard Smith deepened his love for natural history – already manifest in his insistence to repeatedly visit the Zoo and Natural History Museum in London – while bird-watching and beetle-collecting during the holidays in Exmoor. His family was generally not scientifically inclined, and there were expectations for him to join his grandfather’s stockbroking firm. However, during one Sunday lunch he declared that he would not do so. What was he going to do then? Remembering a lecture on the building of the Sydney Harbour Bridge, he decided, rather spontaneously, to become an engineer. And so, after graduating from Eton in 1938, he went on to read engineering at Cambridge.

Maynard Smith is known for not having liked his time at boarding school very much – the atmosphere, he felt, was ‘really anti-intellectual’, ‘snobbish’ and ‘arrogant’ – but he credited Eton with teaching him mathematics and giving him the freedom to explore the natural sciences on his own, mostly by reading popular science books. Cambridge, in a way, did less for him academically than Eton. ‘This time, however, the fault was partly mine and partly Hitler’s. It was hard, in 1938, to take either academic work, or one’s own future, seriously.’ He joined the Communist Party, influenced by a visit of Nazi Germany in the summer of 1938 from which he returned ‘in a state of complete confusion, convinced that my pacifism was wrong’. Communists were those ‘saying we have got to unite and oppose Fascism’, and he spent more time being politically active than studying. Soon after joining, Maynard Smith met Sheila Matthew, his future wife, at a Communist Camp. They were to marry in 1941, making Maynard Smith one of the first married undergraduate students at Trinity College. Their first son, Anthony, would be born in 1944, their daughter Carol in 1946, and their youngest, Julian, in 1949.

In 1941, Maynard Smith graduated with a second-class honours degree in mechanical engineering. After graduation, he worked as an aircraft stressman which, importantly, ‘taught him to trust models, a lesson that would become fundamental in his work as a scientist.’ Moreover, ‘and for obvious reasons, Maynard Smith formed the valuable habit of not making mistakes in computations.’ However, when the war was over, he began to reconsider his career choices. He decided to return to his first love and started a second degree in zoology at University College London. Maynard Smith knew JBS Haldane was teaching there, whose work he had sought out already at Eton because several teachers seemed to particularly hate this man – so he couldn’t be ‘all bad’.

During his years as an undergraduate at UCL Maynard Smith became less and less active politically. He was much more involved in his studies than he ever was at Cambridge. In addition, Lysenkoism reached its peak in 1948. Trofim Lysenko was a Soviet biologist and Lamarckist supported by the Soviet government. Maynard Smith was not so much averse to Lysenkoism as ‘disgusted’ by the comrades who were ignorant of genetics but who were nonetheless telling him what to believe. He lost faith in the Communist Party, became disillusioned with communist politics and – though to a lesser extent – with Marxist philosophy. In 1956, after the Soviet Invasion of Hungary, he finally left the Party yet retained his leftist political outlook.

JMS-1984
John Maynard Smith c:1984. Copyright University of Sussex

In the year before his death, Animal Signals, his last book, co-written with David Harper, was published. The book was one of several; Maynard Smith published both textbooks and popular science – his ‘little Penguin’, The Theory of Evolution, was published as early as 1958. Indeed, he was convinced that science is a social activity: he had a ‘desire to embed discoveries in the discourse of a community as broad as possible.’ So next to writing books, reviews, and essays he also appeared on both radio and television.

The John Maynard Smith Archive at the British Library documents over half a century of John Maynard Smith's work as an evolutionary biologist, covering the years 1948 to 2004 (with an emphasis on the 1970s to 1990s). It contains letters, notes, computer printouts, draft manuscripts, lecture notes and offprints as well as artefacts and digital files. The archive is available to readers through the British Library Explore Archives and Manuscripts catalogue (Add MS 86569-86840), excepting the digital material which is in the process of being catalogued.

Maynard Smith's books and scientific papers, along with two interviews (one on camera), can be found via the British Library Explore catalogue.

This post forms part of a series on our Science and Untold Lives blogs highlighting some of the British Library’s science collections as part of British Science Week 2017.

 

Sources and Further Reading:

Charlesworth, B. and Harvey, P. (2005). John Maynard Smith. Biographical Memoirs of Fellows of the Royal Society 51, 254-265.

Kohn, M. (2004). A Reason for Everything: Natural Selection and the English Imagination. London: Faber and Faber, esp. pp.197-255.

‘Making it formal.’ (1988). In: Wolpert, L. and Richards, A. (eds.). A Passion for Science (pp.122-137). Oxford [etc.]: Oxford University Press.

Maynard Smith, J. (1985). In Haldane's Footsteps. In: Dewsbury, D.A. (ed.). Leaders in the Study of Animal Behavior: Autobiographical Perspectives (pp.347-354). Lewisburg, PA: Bucknell University Press.

Posted by Helen Piel. Helen Piel is a PhD student at the University of Leeds and the British Library. She is part of the AHRC's Collaborative Doctoral Partnership scheme and working on the John Maynard Smith Archive, exploring the working life of a British evolutionary biologist in the post-war period.

22 November 2016

Stephen Hales: Reverend, Researcher, Reformer

Add comment

In the final episode of “Treasures of the British Library” series (tonight at 9pm on Sky Arts) we explored the ancestry of trumpeter Alison Balsom. Alison is descended from the 18th century clergyman and polymath Stephen Hales (1677-1761) and she was keen to find out more about this remarkable man.

The first item I showed Alison was Hales’ seminal work “Vegetable Staticks” or to give it its full title “Vegetable Staticks: or an account of some statical experiments on the sap in vegetables: being an essay towards a natural history of vegetation”. Alas, it was not an age of punchy titles. Hales was interested in understanding how plants give off and take up water and in this book he outlines the many meticulous experiments that seek to understand these processes. Hales even invented the ‘pneumatic trough’ (see below) and used this to collect gases given off by plants. He didn’t however analyse the composition of this gas, since at that time air was understood to be a pure element. It was not until many years later that Joseph Priestley and Antoine Lavoisier discovered oxygen was a component of air, making use of Hales’ pneumatic trough to collect, analyse and separate gases.


Vegetable Staticks Stephen Hales p262
Stephen Hales' pneumatic trough. From Vegetable Staticks p260


Some of Hales’ conclusions were remarkably prescient outlining the process of photosynthesis many years before its chemical basis was elucidated. One key quote draws parallels between the function of the leaves of plants with animals' lungs.

Vegetable Staticks Stephen Hales p326
From Vegetable Staticks. p326

 

Two pages later Hales also postulates that light might be a form of energy which is needed by the plant to survive.

Vegetable Staticks Stephen Hales p327
From Vegetable Staticks. p327

 

Alison and I then went on to look at Hales’ “A Description of Ventilators”. One of Hale’s social projects was the invention of ventilating systems for ships and prisons where overcrowding meant that stale air and unhygienic conditions were rife. Hales’ invention was essentially a giant set of bellows which removed the noxious air. The ventilator was initially used to dry grain for preservation but was eventually rolled out to ships, hospitals and prisons where it saved many lives.



Last but not least we came to Reverend Hales’ “A Friendly Admonition to Drinkers of Gin, Brandy and Other Spirituous liquors” which was published anonymously in 1751. Hales was a strong supporter of the Gin Acts of the early 18th century where gin sales were subject to high taxes in an effort to reduce consumption. In the tract he outlines the many physiological consequences of consuming as he called them, “most intoxicating and baneful spirits”. Readers are warned that liquors ‘frequently cause those Obstructions and Stoppages in the Liver, which occasion the Jaundice, Dropsy and many other fatal diseases” and “impair the mind as much as the body”.  However the message was as much moral as it was medical with Hales condemning drunkards and the great sin of drinking throughout.

A friendly admonition Stephen Hales
Stephen Hales' A Friendly Admonition... Title page and p25

 

Although Hales trained as a clergyman and did not have any formal scientific training his achievements rival many of the well-known scientists of the day. Despite this Hales does not tend to feature alongside famous scientists in the history books so we were pleased to be able to shed some light on this interesting character as part of the Treasures of the British Library series.

Katie Howe

With thanks to Tanya Kirk and Duncan Heyes for help sourcing Stephen Hales material from the British Library collections.

27 October 2016

Replace, Reduce, Refine: Animals in Research.

Add comment

PhD placement student Mandy Kleinsorge looks back on our most recent TalkScience@BL event.

TalkScience@BL - Replace, Reduce, Refine: Animals in Research

The use of animals in research is as controversial as ever. It is well-known that animal research has brought about some great discoveries in the past1, such as the development of Herceptin and Tamoxifen for the treatment of breast cancer or the discovery of bronchodilators to treat the symptoms of asthma. Today, the UK regulations for research involving animals are among the tightest in the world. In consequence, it is illegal in the UK (and in Europe) to use an animal in research if there is a viable non-animal alternative2. Despite this, the number of experimental procedures on animals in the UK has been steadily increasing over the last years3 and funding of non-animal research accounted for only 0.036 % of the UK national R&D science expenditure4 (2011). Apparently, three quarters of Britons agreed that there needs to be more research carried out into alternatives to animal experimentation5 (2012).

On 13th October, we invited experts in the field to the British Library to publicly discuss the current state of alternatives to animals, as well as the efforts that are made to improve the welfare of animals that are still needed in scientific research. The concept of reducing or even substituting animals in scientific experiments (or at least improving the conditions under which these experiments are conducted) is not new. In 1959, Russell and Burch established the principles of the Three Rs (Replacement, Reduction and Refinement)6 which came to be EU-wide guidelines for the more ethical use – or non-use – of animals in research. Today, a number of organisations campaign for openness and education as to why animals are needed in some areas of research, but also as to where we might not actually need them anymore. One of those is the National Centre for the Replacement, Refinement & Reduction of Animals in Research (NC3Rs) who we collaborated with on our TalkScience event ‘Replace, Reduce, Refine: Animals in Research’. The event was chaired by Stephen Holgate, Professor of Medicine at the University of Southampton and Board Chair of the NC3Rs.

Taking a closer look at Robin's amoeba.
Taking a closer look at Robin's amoeba.

The first speaker of the evening was Robin Williams (Head of the Biomedical Sciences Centre at Royal Holloway, University of London). Robin uses Dictyostelium, a social amoeba and therefore non-animal model, to conduct research into neurological diseases like Alzheimer’s. He even brought some amoeba for the audience to look at! Besides bringing awareness to the fact that this organism can actually represent a viable alternative to animal experimentation, he also drew attention to two big problems that researchers using animal alternatives are facing. Acquiring funding and publishing scientific papers are the most important tasks of senior researchers and both of these are complicated by a limited acceptance of non-animal models. Although 3Rs practice is increasingly advocated in the UK, the peer review process regulating funding and publication of research projects is a global endeavour. Robin therefore called for a shift in attitude towards alternatives to animals on a world-wide level.

Our second speaker, Sally Robinson (Head of Laboratory Animal Science UK at AstraZeneca), shed some light into the use of animals in pharmaceutical research. Sally stressed the importance of using the most appropriate model – animal or non-animal – to answer the scientific question. This is not as trivial as it sounds, and is key to obtaining meaningful results and minimising use of animals where possible. The welfare of the animals used in drug development is equally important, as Sally illustrated with the refinement of dog housing. By optimising pen design7, the welfare of laboratory dogs can be drastically improved, and so can the quality of scientific research they’re involved in. Furthermore, Sally herself had a leading role in the challenging of the regulatory requirement for acute toxicity tests in drug development8, which ultimately changed international legislative guidance and reduced the number of animals needed in pharmaceutical research.

Our panel: Stephen Holgate, Robin Williams, Sally Robinson and Robin Lovell-Badge.
Our panel: Stephen Holgate, Robin Williams, Sally Robinson and Robin Lovell-Badge.

Our last speaker was Robin Lovell-Badge (Head of the Division of Stem Cell Biology and Developmental Genetics at the Francis Crick Institute). He opened his talk by endorsing openness in animal research. This is a welcome and necessary trend of the past few years – after animal research had been conducted behind closed doors in the UK for decades for fear of violent actions. The ‘Concordat on Openness on Animal Research’9 was initiated in 2012 and has been signed by 107 UK organisations to date. Robin explained which animals the newly built Francis Crick Institute will work with and why, and how Home Office guidelines on animal research have helped inform the design of their state-of-the-art facilities. He also mentioned some of their work that doesn’t involve animals, like research using induced pluripotent stem (iPS) cells. These iPS cells resemble embryonic stem cells and can be generated from any living cell of a human donor. They are able to differentiate into virtually every cell type of the body, presenting an alternative source of human tissue for drug screenings and the modelling of diseases10. This fairly new technology might even be useful as an alternative to animal experiments in the future.

In discussion with the audience it became clear that the UK is leading the world in the realisation of the 3Rs. However, there is still room for much improvement in furthering the 3Rs. While better experimental design using robust biostatistics and in-depth training of scientists handling animals is vital, increased acceptance of negative data would avoid unnecessary duplication of experiments using animals.

The discussion continued after the event.
The discussion continued after the event.

When asked whether an animal-free research in the immediate future was possible, the panel agreed that it wasn’t. A lot more research into alternatives as well as a change in people’s mindsets is needed beforehand. But how do we exert pressure for this change? Do we need animal activists to do this, one audience member asked. Good question. It is definitely necessary to bring different types of people together to have more balanced and open discussions about this emotive topic. So, thanks to the speakers and the audience of this TalkScience event for joining us to disuss this important issue.

Further reading:

1 Understanding Animal Research. Forty reasons why we need animals in research.
2 Animals in Science Committee. Consolidated version of the Animals Scientific Procedures Act 1986.
3 Home Office. Statistics of scientific procedures on living animals, Great Britain 2015.
4 Taylor, K. EU member state government contribution to alternative methods.
5 Ipsos MORI. Views on the use of animals in scientific research.
6 Russell, WMS and Burch, RL. The principles of humane experimental technique.
7 Refining Dog Care. Dog unit and home pen design.
8 Robinson, S et al. A European pharmaceutical company initiative challenging the regulatory requirement for acute toxicity studies in pharmaceutical drug development.
9 Understanding Animal Research. Concordat on Openness on Animal Research.
10 Takahashi, K and Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency.

 

05 September 2016

Social Media Data: What’s the use?

Add comment

Team ScienceBL is pleased to bring you #TheDataDebates -  an exciting new partnership with the AHRC, the ESRC and the Alan Turing Institute. In our first event on 21st September we’re discussing social media. Join us!

Every day people around the world post a staggering 400 million tweets, upload 350 million photos to Facebook and view 4 billion videos on YouTube. Analysing this mass of data can help us understand how people think and act but there are also many potential problems.  Ahead of the event, we looked into a few interesting applications of social media data.

Politically correct? 

During the 2015 General Election, experts used a technique called sentiment analysis to examine Twitter users’ reactions to the televised leadership debates1. But is this type of analysis actually useful? Some think that tweets are spontaneous and might not represent the more calculated political decision of voters.

On the other side of the pond, Obama’s election strategy in 2012 made use of social media data on an unprecedented scale2. A huge data analytics team looked at social media data for patterns in past voter characteristics and used this information to inform their marketing strategy - e.g. broadcasting TV adverts in specific slots targeted at swing voters and virtually scouring the social media networks of Obama supporters on the hunt for friends who could be persuaded to join the campaign as well. 

8167745752_44e8ff5737_b
Image from Flickr

In this year's US election, both Hillary Clinton and Donald Trump are making the most of social media's huge reach to rally support. The Trump campaign has recently released the America First app which collects personal data and awards points for recruiting friends3. Meanwhile Democrat nominee Clinton is building on the work of Barack Obama's social media team and exploring platforms such as Pinterest and YouTube4. Only time will tell who the eventual winner will be.

Playing the market

You know how Amazon suggests items you might like based on the items you’ve browsed on their site? This is a common marketing technique that allows companies to re-advertise products to users who have shown some interest in the brand but might not have bought anything. Linking browsing history to social media comments has the potential to make this targeted marketing even more sophisticated4.

Credit where credit’s due?

Many ‘new generation’ loan companies don’t use a traditional credit checks but instead gather other information on an individual - including social media data – and then decide whether to grant the loan5. Opinion is divided as to whether this new model is a good thing. On the one hand it allows people who might have been rejected by traditional checks to get credit. But critics say that people are being judged on data that they assume is private. And could this be a slippery slope to allowing other industries (e.g. insurance) to gather information in this way? Could this lead to discrimination?

5463888252_bd928fb95b_b
Image from Flickr

What's the problem?

Despite all these applications there’s lots of discussion about the best way to analyse social media data. How can we control for biases and how do we make sure our samples are representative? There are also concerns about privacy and consent. Some social media data (like Twitter) is public and can be seen and used by anyone (subject to terms and conditions). But most Facebook data is only visible to people specified by the user. The problem is: do users always know what they are signing up for?

Media-998990_960_720
Image from Pixabay

Lots of big data companies are using anonymised data (where obvious identifiers like name and date of birth are removed) which can be distributed without the users consent. But there may still be the potential for individuals to be re-identified - especially if multiple datasets are combined - and this is a major problem for many concerned with privacy.

If you are an avid social media user, a big data specialist, a privacy advocate or are simply interested in finding out more join us on 21st September to discuss further. Tickets are available here.

Katie Howe

12 August 2016

“Like light shining in a dark place”: Florence Nightingale and William Farr

Add comment

On the anniversary of Florence Nightingale’s death, Katie Howe explores her scientific legacy.

Perhaps best known as ‘the lady with the lamp’ Florence Nightingale was also an accomplished scientist and social reformer.

In 1854, with Britain in the midst of the Crimean conflict, Nightingale was appointed to lead a party of nurses to a military hospital in Scutari (in modern day Istanbul). When she arrived she discovered a lack of coordination between hospitals and no standardised or consistent reporting of mortality rates and causes of death. Nightingale set to work gathering extensive information on all aspects of hospital care.

After returning from the Crimea, Nightingale used her new found celebrity status and personal connections to enlist the help of the eminent Victorian epidemiologist and statistician William Farr in analysing the vast quantities of data she had collected.

Their correspondence, which is held at the British Library, reveals a respectful professional relationship, with Farr often signing off,

“I have the honour to be your very faithful servant.”

In May 1857, when Nightingale sent Farr the death rates calculated from her Crimean war data, he replied,

“Dear Miss Nightingale. I have read with much profit your admirable observations. It is like light shining in a dark place. You must when you have completed your task - give some preliminary explanation - for the sake of the ignorant reader.” (Add MS 43398 f.10)

Add MS 43398 f.10
Add MS 43398 f.10


So Florence Nightingale was not only the literal ‘lady with the lamp’, but her statistical work also illuminated worrying trends in army mortality rates.

After receiving further data from Nightingale in November the same year, Farr wrote:

“This speech is the best that was ever written on diagrams or on the Army.”  (Add MS 43398 f.37)

 

Add MS 43398 f.37
Add MS 43398 f.37


As a result of this productive collaboration with Farr, Nightingale learned that the majority of deaths in the Crimean War were not due to battle wounds but to preventable diseases like typhus and cholera.

To get this important message across to high-ranking government officials who had no statistical training, Nightingale knew she needed a powerful visual message. She represented the cause of death in a revolutionary new way. Rather than using a table or list as was common at the time she created this striking rose diagram. 

Each of the 12 wedges represents a month of the year and changes in the wedges’ colour reveal changes over time. At a glance it was easy to see the deaths from epidemic diseases (blue) far outweighed deaths from battlefield wounds (red) and deaths from other causes such as accidents or frostbite (black).  After sanitary reforms such as the introduction of basic sanitation, hand washing and ventilation, deaths dropped dramatically. Compare the right rose (April 1854-March 1855) with left rose (April 1855-March 1856).

Rose diagram
Florence Nightingale’s Rose diagram “Notes on matters, affecting the health, efficiency and hospital administration of the British Army. London, 1858”. C.194.b.297

 

Her rose diagram was so easy to understand it was widely republished. Ultimately this striking visualisation and the accompanying report convinced the government that deaths were preventable if sanitation reforms were implemented in military hospitals. Nightingale’s work provided a catalyst for change, driving better and cleaner hospitals and the establishment of a new army statistics department to improve healthcare.

08 August 2016

Local heroes: “Without the least sense of pain or the movement of a muscle”

Add comment

As part of a new series exploring local heroes in the Knowledge Quarter area, Philip Eagle reveals the curious history of anesthesia. 

Francis_Boott
Francis Boott. Image: Public domain

A short bus ride away from the British Library, at 52 Gower Street, a blue plaque records the site of the first operation under general anaesthesia in the UK. On 19th December 1846, the dentist James Robinson performed a tooth extraction on a Miss Lonsdale. At the time, 52 Gower Street was the home of Dr. Francis Boott, an American expatriate physician who had heard from friends of the development of diethyl ether as an anaesthetic by William Morton in Boston.

Robinson lived further down the street towards the West End, at 14 Gower Street, where he has his own blue plaque. As well as his work on anaesthetics, he was the author of The Surgical and Mechanical Treatment of the Teeth, claimed to be the first British dental textbook of real scientific quality. He would later become dentist to Prince Albert, and be significantly involved in the creation of the College of Dentistry and the National Dental Hospital.

In a letter to the Lancet, Boott described the operation with the following words:

“I beg to add, that on Saturday, the 19th, a firmly fixed molar tooth was extracted in my study from Miss Lonsdale, by Mr. Robinson, in the presence of my wife, two of my daughters, and myself, without the least sense of pain, or the movement of a muscle”

In a book published later in the year, Robinson himself stated that the patient was only thirteen years old, and reported that:

“She had not felt the slightest pain, but had been dreaming of the country”.

Anaesthesia blue plaques
Blue plaque images by Spudgun67 CC BY-SA 4.0

Subsequently in the nineteenth century, diethyl ether was largely replaced as a general anaesthetic in the UK by chloroform, which was less irritating to the throat and lungs and less likely to have the initially stimulant effect that ether had on some patients. Since the mid twentieth century, the most important inhaled anaesthetics have been the fluorinated alkane halothane and fluorinated ethers such as sevoflurane and desflurane, which are pharmacologically safer and more effective, and also physically safer due to their lower flammability.

Philip Eagle, STM Content Expert

Sources and further reading:

  • Anesthesiology, Science, Technology & Business (P) GY 30-E(4), since 2012 available electronically through Ovid in the Reading Rooms
  • Boott, F. Surgical operations performed during insensibility produced by the inhalation of sulphuric ether*, Lancet, 1847, 49 (1218): 5-8. General Reference Collection P.P.2787. Also available electronically through Science Direct in the Reading Rooms. * Note for chemists: “sulphuric ether” was a common name at the time for diethyl ether, due to its preparation by reacting ethanol with sulphuric acid. The chemical itself did not contain any sulphur.
  • British Journal of Anaesthesia, Science, Technology & Business (P) GY 30-E(2), since 2014 available electronically through OUP in the Reading Rooms
  • Ellis, R H. James Robinson: England’s true pioneer of anaesthesia. In The History of Anesthesia, Third International Symposium, Proceedings, 1992: 153-164. Document Supply 4317.854000. Available online.
  • Johnson, K B. Clinical pharmacology for anesthesiology. London: McGraw-Hill Education, 2015. Science, Technology & Business (B) 615.781
  • Pain, Document Supply 6333.795000, also available electronically through Ovid in the Reading Rooms
  • Robinson, J. Treatise on the inhalation of the vapour of ether for the prevention of pain in surgical operations, etc. London: Webster & Co. 1847. General Reference Collection 7481.cc.6
  • Robinson, J. The surgical and mechanical treatment of the teeth: including dental mechanics. London, 1846. General Reference Collection 1186.c.46 and RB.23.a.27503.
  • Shafer, S L and others. Stoelting’s pharmacology and physiology in anesthetic practice. Philadelphia: Lippincott Williams & Wilkins, 2015. Science, Technology & Business (B) 615.781.
  • Snow, S J. Blessed days of anaesthesia. New York: Oxford University Press. 2008. General Reference Collection YC.2009.a.15022