THE BRITISH LIBRARY

Science blog

52 posts categorized "Research"

10 November 2017

Using science to build international relations: a short introduction to science diplomacy

Add comment

Today, on World Science Day for Peace and Development, scientists and policymakers attending the World Science Forum in Jordan are discussing the role science can play in nurturing diplomatic relations.

Science diplomacy is an umbrella term for a wide range of activities in which science and technology are leveraged to foster ties between nations. Governments are aware that collaborating with international partners to achieve scientific goals can further their national interests. Consequently they are paying increasing attention to the idea of science as a diplomatic tool.

How is it practised? On a bilateral level diplomats co-ordinate scientific agreements which commit signatories to pooling resources by sharing knowledge and collaborating on research projects. Such agreements can open up opportunities for product development and trade deals, and are becoming an important part of the UK’s strategy to expand its research and innovation horizons post-Brexit.

Jo Johnson Ruth Garber
Jo Johnson (UK Minister of State for Universities, Science, Research and Innovation) and Judith G. Garber (U.S. Acting Assistant Secretary of State for Oceans and International Environmental and Scientific Affairs) signed the first U.S.-UK Science and Technology Agreement on 20 September 2017 in Washington, D.C. The UK is putting £65 million into the Deep Underground Neutrino Experiment (DUNE). Photo credit: STFC/FCO

Science is a global enterprise in which international collaboration is the norm. In particular multinational teams are needed to run large experimental facilities such as the European Organization for Nuclear Research (CERN) which are beyond the scope of individual countries. One of the by-products of these neutral working environments is science diplomacy. Scientists can develop long-lasting, cross-cultural relationships that sometimes help to bridge difficult political situations from the bottom up. Proposals for these huge infrastructure projects are often driven by an incentive to stimulate co-operation as much as for a need to build scientific capacity.

This was the case for the SESAME synchrotron which opened earlier this year in Jordan. The synchrotron’s powerful light source can be used to study the properties of a range of different materials, attracting researchers from across the Middle East, including Iranians, Israelis and Palestinians.

SESAME construction
Countries from across the Middle East have come together to build SESAME. Photo credit: SESAME

Science diplomacy also comes into play in resolving sensitive international disputes. When negotiations to limit Iran’s nuclear programme stalled, credit for their successful conclusion went to the two physicists, one Iranian and one US, who worked out the scientific details of the 2015 deal.

Four negotiators
The scientists and Ministers who negotiated the Iran deal: US Energy Secretary Ernest Moniz, US Secretary of State John Kerry, Iranian Foreign Minister Javad Zarif and Vice President of the Iranian Atomic Energy Organization Dr Ali Akbar Salehi. Photo credit: U.S. Mission Photo/Eric Bridiers

Scientists and diplomats also work together in addressing global issues such as climate change, antimicrobial resistance or cross-border public health crises. Using scientific evidence is fundamental when negotiating coherent responses to shared challenges, and government science advisers are seen as a key mechanism in getting science into policymaking. Gradually foreign ministries around the world are appointing their own science advisers to channel scientific research into the work of their departments.

Various strategic funding programmes, some of which focus on meeting the UN’s sustainable development goals, support the aims of science diplomacy. These international collaborative projects generate the necessary evidence to inform policymaking while also stimulating partnerships that foster trust between nations.

Climate ready rice Newton Prize
The Newton Fund project ‘Climate Ready Rice’ is being conducted by scientists from Sheffield University in the UK, Kasetsart University in Thailand and the International Rice Research Institute (IRRI) in the Philippines.Photo credit: IRRI

It is unclear how to evaluate the impact of science diplomacy activities, but participants agree that they only work when based around excellent science that generates mutual benefits.

Emmeline Ledgerwood is an AHRC collaborative student with the British Library Oral History department and the University of Leicester. She is preparing a policy briefing on science diplomacy as part of an AHRC-funded policy fellowship at the Parliamentary Office of Science & Technology (POST). The briefing will be published by POST in December 2017.

POST runs several fellowship schemes with Research Councils, learned societies and charities, through which PhD students are sponsored to spend (usually) three months working at POST. Some fellowships are also open to postdoctoral researchers in academia and industry.  

You can follow @EmmeLedgerwood and @POST_UK on Twitter.

The statements and opinions expressed in this piece are those of the author alone, not of the Parliamentary Office of Science and Technology.

05 May 2017

The first British-made satellite was launched fifty years ago today

Add comment

Scout rocket
A NASA Scout rocket of the type used to launch Ariel 3. Used under the NASA copyright policy.


Today is the fiftieth anniversary of the launch of Ariel 3, the first satellite to be designed and constructed in the UK. The two previous Ariel satellites had been designed in Britain but constructed by NASA. It was launched by NASA in the USA on 5th May 1967, carrying five scientific experiments in the fields of astronomy and atmospheric studies. It was shut down in September 1969 and re-entered Earth’s atmosphere on 14th December 1970.

 

The international collaboration took place under COSPAR, the Committee on Space Research. Its experiments were:

An investigation of the electron density and temperature in the ionosphere (the portion of the upper atmosphere where air molecules are ionised by solar radiation) using a Langmuir probe, and a second experiment using a parallel-plate capacitor, both led by Professor James Sayers of the University of Birmingham.

A mapping of large-scape radio noise sources in the Milky Way, led by Professor F Graham Smith of the University of Cambridge.

Measuring the concentration of oxygen in the atmosphere at heights of 150-300 km, led by Dr. Kenneth H Stewart of the Meteorological Office.

Measuring radio emissions from thunderstorms and other natural terrestrial sources at six key frequencies, led by John A Murphy of the Rutherford Appleton Laboratory.

A worldwide survey of VLF radio signals, and an investigation of the effects of the propagation path on a 16kHz ground-based radio transmitter, led by Professor Thomas R Kaiser of the University of Sheffield.

For more information on the satellite, see the NASA catalog entry on it. Contemporary descriptions of the satellite and the results of the experiments were contained in two special journal issues:

Radio and Electronic Engineer, 1968, 35 (1). British Library shelfmark STM (P) RT 40-E(7) and DSC 7229.400000, also available online in our Reading Rooms through our subscription to IEEE Xplore.

Proceedings of the Royal Society, 1969, 311 (1507). British Library shelfmark (P) JA 00-E(12), also available online in our Reading Rooms through JSTOR.

13 January 2017

Making hydrogen from wax

Add comment

Philip recently attended an event for other Oxford University chemistry alumni, and one of the speakers drew attention to a recent publication from, among others, Oxford chemists, regarding the production of hydrogen from paraffin waxes by microwave degradation using a ruthenium catalyst.

Hydrogen has often been suggested as an environmentally-friendly replacement energy source for fossil fuels in transport vehicles and other applications requiring high energy density. (Note that hydrogen is not a “fuel”, as it must be made using energy from other sources, which can be environmentally-friendly or not.) However, there are significant problems with this, notably involving the safe storage of a highly-inflammable and explosive gas which is much lighter than air.

Hydrogen wax cycle
Figure 5 from original article showing chemical cycle and outputs

This publication suggests that wax could be carried on vehicles and used to create hydrogen gas in situ, the waste carbon being used to make more wax via syngas production and the Fischer-Tropsch process, where carbon monoxide and hydrogen is converted into hydrocarbons as a potential source of petro-chemicals that does not involve releasing fossil carbon into the atmosphere. While this publication is still a long way from a working industrial-scale process, it offers a very hopeful potential avenue for less-polluting technology.

Source: Gonzalez-Cortes, S et al. Wax: A benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition, Scientific Reports, 2016 6, 35315. Available online at http://www.nature.com/articles/srep35315

Further reading:
Ball, M et al (Eds.). Compendium of hydrogen energy: volume 4, Hydrogen use, safety and the hydrogen economy, Oxford: Woodhead Publishing, 2015. Available online in the British Library Reading Rooms.

16 December 2016

9 famous scientists and their PhD theses

Add comment

If you are currently working towards a PhD you might worry that your thesis is destined for life as a handy doorstop, or to gather dust on a forgotten Library shelf. But this work can be a stepping stone - either to a career in academia or something else altogether. With this in mind we decided to check out the British Library’s electronic theses service EThOS to see what treasures we could unearth from influential scientists while they were lowly graduate students.

From 1970-1974 Brian May, Queen’s famous guitarist, studied for a PhD investigating interplanetary dust in the solar system. He abandoned his studies when Queen started to have international success. Many years later he returned to Imperial to complete his PhD studies. His final thesis was awarded in 2008 and was entitled A survey of radial velocities in the zodiacal dust cloud.

Brian Harold May_PhD thesis EThOS

Peter Higgs, who shot to fame in 2013 after his discovery of the Higgs Boson (or God particle) was honoured with the Nobel prize in Physics, started his scientific career studying for a PhD - mysteriously entitled “Some problems in the theory of molecular vibrations”.

D-Ream singer turned astrophysicist Brian Cox started his academic career with a PhD studying in high energy particle physics at the University of Manchester. Things could only get better from there... (sorry!)

Prof_Brian_Cox
By cellanr (Prof Brian Cox) [CC BY-SA 2.0], via Wikimedia Commons

 

Rosalind Franklin is famous for producing the X-ray diffraction images of DNA that led to the discovery of its double helical structure. Her PhD research focussed on the molecular structure of coal and other organic materials.

Jocelyn Bell Burnell discovered radio pulsars while studying for a PhD at the University of Cambridge in the 1960s.  A visualisation of one of these pulsars was famously used as the cover art for Joy Division's best-selling album Unknown Pleasures.

JoyDivision_UnknownPleasures and Jocelyn Bell Burnell
Jocelyn bell Burnell image by Roger W Haworth (Flickr) [CC BY-SA 2.0], via Wikimedia Commons

 

Theoretical physicist Stephen Hawking obtained his PhD from the University of Cambridge in 1966 after being diagnosed with motor neurone disease in 1963.  His PhD thesis, properties of expanding universes describes his theory for the creation of the universe and was inspired by Roger Penrose's work on space time singularities.

Jim Al-Khalili presents popular science on radio and TV including Radio 4’s The Life Scientific. He started his career at the University of Surrey with a PhD on “Immediate energy deuteron elastic scattering from nuclei in a three-body model”. Jim (or Jameel) Al-Khalili is now Professor of Physics at the University of Surrey.

Jim Al-Khalili PhD thesis
By Vera de Kok (Own work) [CC BY-SA 3.0], via Wikimedia Commons

Sir Mark Walport investigated the “biology of complement receptors” for his PhD at the University of Cambridge. Complement receptors are key part of our immune system and are responsible for the detection of pathogens. He now serves the lofty position of Chief Scientific Advisor to the UK Government is former director of the biomedical research funder the Wellcome Trust.

Sir Paul Nurse is now President of the Royal Society and Director of the Francis Crick Institute. His PhD at the University of East Anglia investigated the organisation of amino acids in a species of yeast called Candia Utitlis.  Nurse continued to work on yeast after his PhD and in 1976 discovered the molecules which control the cell cycle in fission yeast. This discovery was honoured with the Nobel Prize in Physiology or Medicine in 2001.

Katie Howe

12 December 2016

Using our science collections

Add comment

Some of you reading this blog may never have come to the British Library Science rooms, or only have used a small part of our services. Here’s an example, based on real queries from our reading rooms, of what you can do when you come here.

Emma is a medical student who has been asked to do a report over the vacation on anticonvulsive drugs. She has some online access to her university’s resources from home, but needs a quieter place to work. After getting her reader pass, she asks the science reference desk for the best place to start. She searches Explore the British Library, which is the main catalogue of books and journals in the library, using the search box on the library computer home page, for books on anticonvulsants. She finds several paper books on the open shelf, in particular “Anti-Epileptic Drugs: a Clinician’s Manual” by Ali A Asadi-Pooya at (B) 615.784, and “Wyllie’s Treatment of Epilepsy”, edited by Elaine Wyllie at (B) 616.85306. Also available is an e-book, “The Treatment of Epilepsy”, edited by Simon Shorvon. 

Drugs
CC-BY by e-Magine art (https://www.flickr.com/photos/emagineart/)

After browsing these she moves on to our electronic databases, which are all available from the “Find Electronic Resources” link on the library computer home page. She discovers our subscription to “Drug Information Fulltext” via Ovid, which includes the full text of the American Hospital Formulary Service’s Drug Information Book, giving detailed information on individual substances.

Druginfo
Ovid search results

In order to comment on recent developments in research, she uses the Embase database, a medical database specialising in pharmaceutical material. The database retrieves 155 results for 2016, which is a number possible to browse by title, but allows it to be narrowed by the type of subject matter of the article, such as whether it focusses on “therapy” or “diagnosis”.

Embase results
Embase search results

If she is interested in a specific drug, she can search for that by name on Embase. Another way to find recent articles on a specific substance is to find the main reference on it in one of the book sources, and then find it on the Web of Science database and look for articles citing it. For example, a major article on the use of the drug vigabatrin for complex partial seizures was Cocito et al, “Vigabatrin in partial seizures – a long-term study”, Epilepsy Research 1989, 3(2), pp. 160-6. Web of Science finds fifty later citations, up to 2014.

This was a taste of the different scientific resources that you can use here. We are open to all scientific researchers who have a need to use our resources, and if you know of something you can’t find at your university or workplace, we may well have it here. If you want to check first, send us a question.

Philip Eagle, STM Content Specialist

22 November 2016

Stephen Hales: Reverend, Researcher, Reformer

Add comment

In the final episode of “Treasures of the British Library” series (tonight at 9pm on Sky Arts) we explored the ancestry of trumpeter Alison Balsom. Alison is descended from the 18th century clergyman and polymath Stephen Hales (1677-1761) and she was keen to find out more about this remarkable man.

The first item I showed Alison was Hales’ seminal work “Vegetable Staticks” or to give it its full title “Vegetable Staticks: or an account of some statical experiments on the sap in vegetables: being an essay towards a natural history of vegetation”. Alas, it was not an age of punchy titles. Hales was interested in understanding how plants give off and take up water and in this book he outlines the many meticulous experiments that seek to understand these processes. Hales even invented the ‘pneumatic trough’ (see below) and used this to collect gases given off by plants. He didn’t however analyse the composition of this gas, since at that time air was understood to be a pure element. It was not until many years later that Joseph Priestley and Antoine Lavoisier discovered oxygen was a component of air, making use of Hales’ pneumatic trough to collect, analyse and separate gases.


Vegetable Staticks Stephen Hales p262
Stephen Hales' pneumatic trough. From Vegetable Staticks p260


Some of Hales’ conclusions were remarkably prescient outlining the process of photosynthesis many years before its chemical basis was elucidated. One key quote draws parallels between the function of the leaves of plants with animals' lungs.

Vegetable Staticks Stephen Hales p326
From Vegetable Staticks. p326

 

Two pages later Hales also postulates that light might be a form of energy which is needed by the plant to survive.

Vegetable Staticks Stephen Hales p327
From Vegetable Staticks. p327

 

Alison and I then went on to look at Hales’ “A Description of Ventilators”. One of Hale’s social projects was the invention of ventilating systems for ships and prisons where overcrowding meant that stale air and unhygienic conditions were rife. Hales’ invention was essentially a giant set of bellows which removed the noxious air. The ventilator was initially used to dry grain for preservation but was eventually rolled out to ships, hospitals and prisons where it saved many lives.



Last but not least we came to Reverend Hales’ “A Friendly Admonition to Drinkers of Gin, Brandy and Other Spirituous liquors” which was published anonymously in 1751. Hales was a strong supporter of the Gin Acts of the early 18th century where gin sales were subject to high taxes in an effort to reduce consumption. In the tract he outlines the many physiological consequences of consuming as he called them, “most intoxicating and baneful spirits”. Readers are warned that liquors ‘frequently cause those Obstructions and Stoppages in the Liver, which occasion the Jaundice, Dropsy and many other fatal diseases” and “impair the mind as much as the body”.  However the message was as much moral as it was medical with Hales condemning drunkards and the great sin of drinking throughout.

A friendly admonition Stephen Hales
Stephen Hales' A Friendly Admonition... Title page and p25

 

Although Hales trained as a clergyman and did not have any formal scientific training his achievements rival many of the well-known scientists of the day. Despite this Hales does not tend to feature alongside famous scientists in the history books so we were pleased to be able to shed some light on this interesting character as part of the Treasures of the British Library series.

Katie Howe

With thanks to Tanya Kirk and Duncan Heyes for help sourcing Stephen Hales material from the British Library collections.

27 October 2016

Replace, Reduce, Refine: Animals in Research.

Add comment

PhD placement student Mandy Kleinsorge looks back on our most recent TalkScience@BL event.

TalkScience@BL - Replace, Reduce, Refine: Animals in Research

The use of animals in research is as controversial as ever. It is well-known that animal research has brought about some great discoveries in the past1, such as the development of Herceptin and Tamoxifen for the treatment of breast cancer or the discovery of bronchodilators to treat the symptoms of asthma. Today, the UK regulations for research involving animals are among the tightest in the world. In consequence, it is illegal in the UK (and in Europe) to use an animal in research if there is a viable non-animal alternative2. Despite this, the number of experimental procedures on animals in the UK has been steadily increasing over the last years3 and funding of non-animal research accounted for only 0.036 % of the UK national R&D science expenditure4 (2011). Apparently, three quarters of Britons agreed that there needs to be more research carried out into alternatives to animal experimentation5 (2012).

On 13th October, we invited experts in the field to the British Library to publicly discuss the current state of alternatives to animals, as well as the efforts that are made to improve the welfare of animals that are still needed in scientific research. The concept of reducing or even substituting animals in scientific experiments (or at least improving the conditions under which these experiments are conducted) is not new. In 1959, Russell and Burch established the principles of the Three Rs (Replacement, Reduction and Refinement)6 which came to be EU-wide guidelines for the more ethical use – or non-use – of animals in research. Today, a number of organisations campaign for openness and education as to why animals are needed in some areas of research, but also as to where we might not actually need them anymore. One of those is the National Centre for the Replacement, Refinement & Reduction of Animals in Research (NC3Rs) who we collaborated with on our TalkScience event ‘Replace, Reduce, Refine: Animals in Research’. The event was chaired by Stephen Holgate, Professor of Medicine at the University of Southampton and Board Chair of the NC3Rs.

Taking a closer look at Robin's amoeba.
Taking a closer look at Robin's amoeba.

The first speaker of the evening was Robin Williams (Head of the Biomedical Sciences Centre at Royal Holloway, University of London). Robin uses Dictyostelium, a social amoeba and therefore non-animal model, to conduct research into neurological diseases like Alzheimer’s. He even brought some amoeba for the audience to look at! Besides bringing awareness to the fact that this organism can actually represent a viable alternative to animal experimentation, he also drew attention to two big problems that researchers using animal alternatives are facing. Acquiring funding and publishing scientific papers are the most important tasks of senior researchers and both of these are complicated by a limited acceptance of non-animal models. Although 3Rs practice is increasingly advocated in the UK, the peer review process regulating funding and publication of research projects is a global endeavour. Robin therefore called for a shift in attitude towards alternatives to animals on a world-wide level.

Our second speaker, Sally Robinson (Head of Laboratory Animal Science UK at AstraZeneca), shed some light into the use of animals in pharmaceutical research. Sally stressed the importance of using the most appropriate model – animal or non-animal – to answer the scientific question. This is not as trivial as it sounds, and is key to obtaining meaningful results and minimising use of animals where possible. The welfare of the animals used in drug development is equally important, as Sally illustrated with the refinement of dog housing. By optimising pen design7, the welfare of laboratory dogs can be drastically improved, and so can the quality of scientific research they’re involved in. Furthermore, Sally herself had a leading role in the challenging of the regulatory requirement for acute toxicity tests in drug development8, which ultimately changed international legislative guidance and reduced the number of animals needed in pharmaceutical research.

Our panel: Stephen Holgate, Robin Williams, Sally Robinson and Robin Lovell-Badge.
Our panel: Stephen Holgate, Robin Williams, Sally Robinson and Robin Lovell-Badge.

Our last speaker was Robin Lovell-Badge (Head of the Division of Stem Cell Biology and Developmental Genetics at the Francis Crick Institute). He opened his talk by endorsing openness in animal research. This is a welcome and necessary trend of the past few years – after animal research had been conducted behind closed doors in the UK for decades for fear of violent actions. The ‘Concordat on Openness on Animal Research’9 was initiated in 2012 and has been signed by 107 UK organisations to date. Robin explained which animals the newly built Francis Crick Institute will work with and why, and how Home Office guidelines on animal research have helped inform the design of their state-of-the-art facilities. He also mentioned some of their work that doesn’t involve animals, like research using induced pluripotent stem (iPS) cells. These iPS cells resemble embryonic stem cells and can be generated from any living cell of a human donor. They are able to differentiate into virtually every cell type of the body, presenting an alternative source of human tissue for drug screenings and the modelling of diseases10. This fairly new technology might even be useful as an alternative to animal experiments in the future.

In discussion with the audience it became clear that the UK is leading the world in the realisation of the 3Rs. However, there is still room for much improvement in furthering the 3Rs. While better experimental design using robust biostatistics and in-depth training of scientists handling animals is vital, increased acceptance of negative data would avoid unnecessary duplication of experiments using animals.

The discussion continued after the event.
The discussion continued after the event.

When asked whether an animal-free research in the immediate future was possible, the panel agreed that it wasn’t. A lot more research into alternatives as well as a change in people’s mindsets is needed beforehand. But how do we exert pressure for this change? Do we need animal activists to do this, one audience member asked. Good question. It is definitely necessary to bring different types of people together to have more balanced and open discussions about this emotive topic. So, thanks to the speakers and the audience of this TalkScience event for joining us to disuss this important issue.

Further reading:

1 Understanding Animal Research. Forty reasons why we need animals in research.
2 Animals in Science Committee. Consolidated version of the Animals Scientific Procedures Act 1986.
3 Home Office. Statistics of scientific procedures on living animals, Great Britain 2015.
4 Taylor, K. EU member state government contribution to alternative methods.
5 Ipsos MORI. Views on the use of animals in scientific research.
6 Russell, WMS and Burch, RL. The principles of humane experimental technique.
7 Refining Dog Care. Dog unit and home pen design.
8 Robinson, S et al. A European pharmaceutical company initiative challenging the regulatory requirement for acute toxicity studies in pharmaceutical drug development.
9 Understanding Animal Research. Concordat on Openness on Animal Research.
10 Takahashi, K and Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency.

 

05 September 2016

Social Media Data: What’s the use?

Add comment

Team ScienceBL is pleased to bring you #TheDataDebates -  an exciting new partnership with the AHRC, the ESRC and the Alan Turing Institute. In our first event on 21st September we’re discussing social media. Join us!

Every day people around the world post a staggering 400 million tweets, upload 350 million photos to Facebook and view 4 billion videos on YouTube. Analysing this mass of data can help us understand how people think and act but there are also many potential problems.  Ahead of the event, we looked into a few interesting applications of social media data.

Politically correct? 

During the 2015 General Election, experts used a technique called sentiment analysis to examine Twitter users’ reactions to the televised leadership debates1. But is this type of analysis actually useful? Some think that tweets are spontaneous and might not represent the more calculated political decision of voters.

On the other side of the pond, Obama’s election strategy in 2012 made use of social media data on an unprecedented scale2. A huge data analytics team looked at social media data for patterns in past voter characteristics and used this information to inform their marketing strategy - e.g. broadcasting TV adverts in specific slots targeted at swing voters and virtually scouring the social media networks of Obama supporters on the hunt for friends who could be persuaded to join the campaign as well. 

8167745752_44e8ff5737_b
Image from Flickr

In this year's US election, both Hillary Clinton and Donald Trump are making the most of social media's huge reach to rally support. The Trump campaign has recently released the America First app which collects personal data and awards points for recruiting friends3. Meanwhile Democrat nominee Clinton is building on the work of Barack Obama's social media team and exploring platforms such as Pinterest and YouTube4. Only time will tell who the eventual winner will be.

Playing the market

You know how Amazon suggests items you might like based on the items you’ve browsed on their site? This is a common marketing technique that allows companies to re-advertise products to users who have shown some interest in the brand but might not have bought anything. Linking browsing history to social media comments has the potential to make this targeted marketing even more sophisticated4.

Credit where credit’s due?

Many ‘new generation’ loan companies don’t use a traditional credit checks but instead gather other information on an individual - including social media data – and then decide whether to grant the loan5. Opinion is divided as to whether this new model is a good thing. On the one hand it allows people who might have been rejected by traditional checks to get credit. But critics say that people are being judged on data that they assume is private. And could this be a slippery slope to allowing other industries (e.g. insurance) to gather information in this way? Could this lead to discrimination?

5463888252_bd928fb95b_b
Image from Flickr

What's the problem?

Despite all these applications there’s lots of discussion about the best way to analyse social media data. How can we control for biases and how do we make sure our samples are representative? There are also concerns about privacy and consent. Some social media data (like Twitter) is public and can be seen and used by anyone (subject to terms and conditions). But most Facebook data is only visible to people specified by the user. The problem is: do users always know what they are signing up for?

Media-998990_960_720
Image from Pixabay

Lots of big data companies are using anonymised data (where obvious identifiers like name and date of birth are removed) which can be distributed without the users consent. But there may still be the potential for individuals to be re-identified - especially if multiple datasets are combined - and this is a major problem for many concerned with privacy.

If you are an avid social media user, a big data specialist, a privacy advocate or are simply interested in finding out more join us on 21st September to discuss further. Tickets are available here.

Katie Howe

12 August 2016

“Like light shining in a dark place”: Florence Nightingale and William Farr

Add comment

On the anniversary of Florence Nightingale’s death, Katie Howe explores her scientific legacy.

Perhaps best known as ‘the lady with the lamp’ Florence Nightingale was also an accomplished scientist and social reformer.

In 1854, with Britain in the midst of the Crimean conflict, Nightingale was appointed to lead a party of nurses to a military hospital in Scutari (in modern day Istanbul). When she arrived she discovered a lack of coordination between hospitals and no standardised or consistent reporting of mortality rates and causes of death. Nightingale set to work gathering extensive information on all aspects of hospital care.

After returning from the Crimea, Nightingale used her new found celebrity status and personal connections to enlist the help of the eminent Victorian epidemiologist and statistician William Farr in analysing the vast quantities of data she had collected.

Their correspondence, which is held at the British Library, reveals a respectful professional relationship, with Farr often signing off,

“I have the honour to be your very faithful servant.”

In May 1857, when Nightingale sent Farr the death rates calculated from her Crimean war data, he replied,

“Dear Miss Nightingale. I have read with much profit your admirable observations. It is like light shining in a dark place. You must when you have completed your task - give some preliminary explanation - for the sake of the ignorant reader.” (Add MS 43398 f.10)

Add MS 43398 f.10
Add MS 43398 f.10


So Florence Nightingale was not only the literal ‘lady with the lamp’, but her statistical work also illuminated worrying trends in army mortality rates.

After receiving further data from Nightingale in November the same year, Farr wrote:

“This speech is the best that was ever written on diagrams or on the Army.”  (Add MS 43398 f.37)

 

Add MS 43398 f.37
Add MS 43398 f.37


As a result of this productive collaboration with Farr, Nightingale learned that the majority of deaths in the Crimean War were not due to battle wounds but to preventable diseases like typhus and cholera.

To get this important message across to high-ranking government officials who had no statistical training, Nightingale knew she needed a powerful visual message. She represented the cause of death in a revolutionary new way. Rather than using a table or list as was common at the time she created this striking rose diagram. 

Each of the 12 wedges represents a month of the year and changes in the wedges’ colour reveal changes over time. At a glance it was easy to see the deaths from epidemic diseases (blue) far outweighed deaths from battlefield wounds (red) and deaths from other causes such as accidents or frostbite (black).  After sanitary reforms such as the introduction of basic sanitation, hand washing and ventilation, deaths dropped dramatically. Compare the right rose (April 1854-March 1855) with left rose (April 1855-March 1856).

Rose diagram
Florence Nightingale’s Rose diagram “Notes on matters, affecting the health, efficiency and hospital administration of the British Army. London, 1858”. C.194.b.297

 

Her rose diagram was so easy to understand it was widely republished. Ultimately this striking visualisation and the accompanying report convinced the government that deaths were preventable if sanitation reforms were implemented in military hospitals. Nightingale’s work provided a catalyst for change, driving better and cleaner hospitals and the establishment of a new army statistics department to improve healthcare.

08 August 2016

Local heroes: “Without the least sense of pain or the movement of a muscle”

Add comment

As part of a new series exploring local heroes in the Knowledge Quarter area, Philip Eagle reveals the curious history of anesthesia. 

Francis_Boott
Francis Boott. Image: Public domain

A short bus ride away from the British Library, at 52 Gower Street, a blue plaque records the site of the first operation under general anaesthesia in the UK. On 19th December 1846, the dentist James Robinson performed a tooth extraction on a Miss Lonsdale. At the time, 52 Gower Street was the home of Dr. Francis Boott, an American expatriate physician who had heard from friends of the development of diethyl ether as an anaesthetic by William Morton in Boston.

Robinson lived further down the street towards the West End, at 14 Gower Street, where he has his own blue plaque. As well as his work on anaesthetics, he was the author of The Surgical and Mechanical Treatment of the Teeth, claimed to be the first British dental textbook of real scientific quality. He would later become dentist to Prince Albert, and be significantly involved in the creation of the College of Dentistry and the National Dental Hospital.

In a letter to the Lancet, Boott described the operation with the following words:

“I beg to add, that on Saturday, the 19th, a firmly fixed molar tooth was extracted in my study from Miss Lonsdale, by Mr. Robinson, in the presence of my wife, two of my daughters, and myself, without the least sense of pain, or the movement of a muscle”

In a book published later in the year, Robinson himself stated that the patient was only thirteen years old, and reported that:

“She had not felt the slightest pain, but had been dreaming of the country”.

Anaesthesia blue plaques
Blue plaque images by Spudgun67 CC BY-SA 4.0

Subsequently in the nineteenth century, diethyl ether was largely replaced as a general anaesthetic in the UK by chloroform, which was less irritating to the throat and lungs and less likely to have the initially stimulant effect that ether had on some patients. Since the mid twentieth century, the most important inhaled anaesthetics have been the fluorinated alkane halothane and fluorinated ethers such as sevoflurane and desflurane, which are pharmacologically safer and more effective, and also physically safer due to their lower flammability.

Philip Eagle, STM Content Expert

Sources and further reading:

  • Anesthesiology, Science, Technology & Business (P) GY 30-E(4), since 2012 available electronically through Ovid in the Reading Rooms
  • Boott, F. Surgical operations performed during insensibility produced by the inhalation of sulphuric ether*, Lancet, 1847, 49 (1218): 5-8. General Reference Collection P.P.2787. Also available electronically through Science Direct in the Reading Rooms. * Note for chemists: “sulphuric ether” was a common name at the time for diethyl ether, due to its preparation by reacting ethanol with sulphuric acid. The chemical itself did not contain any sulphur.
  • British Journal of Anaesthesia, Science, Technology & Business (P) GY 30-E(2), since 2014 available electronically through OUP in the Reading Rooms
  • Ellis, R H. James Robinson: England’s true pioneer of anaesthesia. In The History of Anesthesia, Third International Symposium, Proceedings, 1992: 153-164. Document Supply 4317.854000. Available online.
  • Johnson, K B. Clinical pharmacology for anesthesiology. London: McGraw-Hill Education, 2015. Science, Technology & Business (B) 615.781
  • Pain, Document Supply 6333.795000, also available electronically through Ovid in the Reading Rooms
  • Robinson, J. Treatise on the inhalation of the vapour of ether for the prevention of pain in surgical operations, etc. London: Webster & Co. 1847. General Reference Collection 7481.cc.6
  • Robinson, J. The surgical and mechanical treatment of the teeth: including dental mechanics. London, 1846. General Reference Collection 1186.c.46 and RB.23.a.27503.
  • Shafer, S L and others. Stoelting’s pharmacology and physiology in anesthetic practice. Philadelphia: Lippincott Williams & Wilkins, 2015. Science, Technology & Business (B) 615.781.
  • Snow, S J. Blessed days of anaesthesia. New York: Oxford University Press. 2008. General Reference Collection YC.2009.a.15022