THE BRITISH LIBRARY

Science blog

78 posts categorized "Science"

13 October 2017

Local Heroes: Alphonse Normandy. Pure water and impure food

Add comment

Alphonse Normandy was born in Rouen in 1809 as Alphonse le Mire. He became a medical doctor but was more interested in chemistry, studying at Heidelberg University with the well-known chemist Leopold Gmelin (now famous for the database of inorganic compounds named after him, which grew out of an 1817 textbook he wrote). He moved to London in 1838. From the 1840s he changed his name to "Normandy" after the region where he was born. He lived for some time in Judd Street near the British Library, where he has a blue plaque at number 91. He died in 1864.

He is mostly remembered for his invention of desalination devices, distilling seawater to produce fresh water. He patented his still design as GB13714/1851 with one Richard Fell. The patent is not online but you can see it if you come to the British Library with a reader pass. It uses two-effect distillation where the heat released in the condensation of the initial steam boils a second load of water, using energy more efficiently and effectively doubling the output. The device also captures formerly dissolved air released during the heating of the water and reintroduces it to the steam, creating aerated distillate and reducing the "boiled" taste. In 1863 an Amendment to the Passengers Act of 1855 declared that passenger ships were allowed to reduce the amount of fresh water they carried if they had a desalinator of the Normandy or the rival Winchester-Graveley design.

Normandy still
Normandy's water still, illustrated in his patent


 
Normandy's Patent Marine Aerated Fresh Water Co. was incorporated in 1858. After a few years it moved to a large building near Victoria Docks, which finally closed in 1910. During the later years of his life Normandy clashed with the directors and shareholders of the company due to his only assigning the GB patent to the company but retaining the US patent himself, forcing the company to use him personally as a sales agent for distribution overseas. His sons, however continued with the company. Alphonse's son Frank Normandy wrote what was probably the first book on desalination - A Practical Manual on Sea Water Distillation, which is held in our collections at 08767.aa.5, or 628.16 3395.

 

A surviving Normandy distiller has been found at Fort Zachary Taylor, Key West.

Normandy held many other patents, of which the most notable was hardening soap with sodium sulphate (GB9081/1841). He kept a private laboratory and taught chemistry. He was elected a fellow of the Chemical Society (now the Royal Society of Chemistry) and council member, and was a member of the Royal Institution.

In 1855 he was one of several chemists, doctors and activists to testify to the Select Committee of the House of Commons on food adulteration, a series of hearings that scandalised the British public and led to the first laws against it, although the fight would not truly succeed until much later in the century. Normandy reported that practically all the bread sold in London had been adulterated with alum to make it whiter and to absorb water and bulk it out. He described adulteration of various other foods, in particular the adulteration of coffee with chicory and beer with the neurotoxic tropical plant cocculus indicus. He also briefly described the grossly unhygienic conditions of many London dairies. Ironically, his hardened soap had been banned from sale for some years because the Excise considered the process to be adulteration, which was brought up during the Committee discussion.  

Cruikshank drinkers
Image from "The House that Jack Built" by George Cruikshank, 1853

 

In 1850 he wrote A Commercial Hand Book of Chemical Analysis (shelved here at 1143.h.26), a very interesting book covering most chemicals that were used or sold industrially at the time, and various procedures to check for food adulteration. The book notably described early quantitative colorimetric assays of dyes and spices, and microscopic examination of flour to determine adulteration with other products.

Further reading:
Birkett, J and Radcliffe, 2014, D. Normandy's Patent Marine Aerated Fresh Water Company: a family business for 60 years, 1851-1910. IDA Journal of Desalination and Water Reuse, 6(1), pp.24-32. Available digitally in BL reading rooms.

House of Commons Reports from Committees, 1854-5, vol. 8, pp. 221-530. BS Ref 1. Also available digitally in BL reading rooms.

31 August 2017

Edgar Burr and the grooved golf club head

Add comment

Golf Grooves Twitter

Today's GREATforImagination patent is GB19988 of 1902, the grooved golf club head by Edgar Burr (1866-1908). The grooves allow water and debris to slip away from the ball, so that it can be spun as effectively as a clean and dry one. Adding spin to a golf ball can change its trajectory and cause it to roll in a specific direction once it hits the ground. According to the golfer Edward "Ted" Ray, in his 1922 book "Golf Clubs and How to Use Them", grooved clubs did not become truly popular until the early 1920s, and there was considerable argument in both the UK and USA as to whether they were permitted under the laws of the game. Burr freedom

Very little about Burr's life is recorded in golf history books, but our curators have searched census and births, marriages, and deaths records, and digitised newspapers, to discover some details. Burr described himself on the patent as a stockbroker, but he was also an amateur golfer at the Bushey Hall Club, and wrote a column on the game for the Globe newspaper. His father was a leather worker, and he married in 1896. He was granted the Freedom of the CIty of London in 1900. Unfortunately, his invention does not seem to have made him much money, as he was declared bankrupt in 1906. He died suddenly from gastritis in Sandwich, where he had gone to compete in a golf event.

Thanks to Margaret Makepeace of our East India Company Records team and Untold Lives blog, for her work in researching Burr's life.

Philip Eagle

29 August 2017

I4OC: The British Library and open data

Add comment

In August the British Library joined the Initiative for Open Citations as a stakeholder. The I4OC’s aim of promoting the availability of structured, separable, open citation data fits perfectly with the Library's established strategy for open metadata which has just marked its seventh anniversary. I4oc logo

In August 2010, responding to UK Government calls for increased access to public data to promote transparency, economic growth and research, the British Library launched the strategy by offering over 16m CC0 licensed records from its catalogue and national bibliography datasets. This initiative aimed to remove constraints created by restrictive licensing and library specific standards to enable wider community re-use. In doing so the Library aimed to unlock the value of the data while improving access to information and culture in line with its wider strategic objectives.
 
The initial release was followed in 2011 by the launch of the Library’s first Linked Open Data (LOD) bibliographic service. The Library believed Linked Open Data to be a logical evolutionary step for the established principle of freedom of access to information, offering trusted knowledge organisations a central role in the new information landscape. The development proved influential among the library community in moving the Linked Data debate from theory to practice.

Over 1,700 organisations in 123 countries now use the Library’s open metadata services with many more taking single files. The value of the Library’s open data work was recognised by the British National Bibliography linked dataset receiving a 5 star rating on the UK Government Data.gov.uk site and certification from the Open Data Institute (ODI). In 2016 the Library launched the http://data.bl.uk/ platform in order to offer copies of a range of its datasets available for research and creative purposes. In addition, the BL Labs initiative continues to explore new opportunities for public use of the Library’s digital collections and data in exciting and innovative ways. The British Library therefore remains committed to an open approach to enable the widest possible re-use of its rich metadata and generate the best return on the investment in its creation.

I4oc users
I4OC users by country

 

As the example of the British Library’s open data work shows, opening up metadata facilitates access to information, creates efficiencies and allows others to enhance existing and develop new services. This is particularly important for researchers and others who do not work for organisations with subscriptions to commercial citation databases. The British Library believes that opening up metadata on research facilitates both improved research information management and original research, and therefore benefits all.

The I4OC’s recent call to arms for its stakeholders is therefore very much in tune with the British Library’s open data work in promoting the many benefits of freely accessible citation data for scholars, publishers and wider communities. Such benefits proved compelling enough to enable the I4OC to secure publisher agreement for nearly half of indexed scholarly data to be made openly accessible. This data is now being used in a range of new projects and services including OpenCitations and Wikidata. It's encouraging to see I4OC spreading the open data ideal so successfully and it is to be hoped that it will also succeed in ensuring open citations become the default in future.

Correction: Image shows users of BL open data services by country, not I4OC

09 August 2017

Charles Parsons and the steam turbine

Add comment

Parsons header

Today's GREATforImagination patent is Sir Charles Parsons' invention of the modern steam turbine. In a steam turbine, expanding steam is used to drive a series of rotating vanes, similarly to wind mills. They are much more efficient than reciprocating steam engines such as railway locomotives. The patent, GB1735/1884, is too old to be freely available online, but you can see it if you have a Reader Pass and come to our Business & IP Centre.

Parsons was born in 1854 to an aristocratic Anglo-Irish family with a scientific tradition. His father, the third Earl of Rosse, was a notable astronomer who owned the largest telescope ever constructed in the nineteenth century, first identified the spiral shape of many galaxies, and named the Crab Nebula. Parsons studied maths at Cambridge and then worked as an engineer in Tyneside and Leeds.

He designed and patented his turbine in 1884, initially to generate electricity. Earlier turbines had been impractical and fragile due to their extremely high rotational speed, and Parsons' breakthrough was to design a system which could progressively draw the energy out of the steam in several stages of expansion, making it much slower, more controllable, and less likely to wear out or break under the strain. Parsons first licensed his patents to the Westinghouse company before setting up his own firm and works in Newcastle. Within Parsons' lifetime, turbines of the type he had developed were used to run generators in almost all heat-based electric power stations.

Turbinia_At_Speed compress
Turbinia at speed in the North Sea. Photo by Alfred John West

In the 1890s he came up with the second major use for his turbines, as engines for propeller-driven steamships. This patent, GB11223/1897, is online. In a famous publicity stunt, Parsons built a small, turbine-powered steamship called the Turbinia, and gatecrashed the Royal Navy Review for Queen Victoria's Diamond Jubilee at Spithead in her, literally running rings around the slower reciprocating-engine powered Navy boats that tried to intercept her. By 1905 the Navy had decided that all of its future ships would be turbine-driven.

Parsons continued to invent, in particular in electricity generation, ships, and glass manufacture. He died in 1931, aboard a steam turbine-powered ocean liner during a trip to Jamaica. His company, after a series of takeovers, is now part of Siemens.

19 July 2017

William Perkin and mauveine

Add comment

Mauveineplacard
We’ve been blogging and tweeting a lot about the historical inventions in the GREATforImagination campaign, with links to the key patents involved. Unfortunately, most British patents from before 1895 aren’t available free online and can only be seen if you come to our building at St Pancras. We’ll be making full blog posts about some of these, to give you some more detailed information than can fit into a Tweet or the Instagram post.

Not every invention is made by people who see a problem and set out to find a solution to it. Curiosity-driven science can produce useful inventions that the scientists involved never anticipated. A classic example of this took place in 1856, when William Perkin tried to make an artificial anti-malarial drug, and instead discovered what would become the first totally human-created molecule to become the centre of a profitable business.

The eighteen-year-old Perkin was a student of the chemist August Wilhelm von Hofmann at the Royal College of Chemistry in London (eventually merged into what would become Imperial College). Hofmann had speculated to Perkin that on the basis of the atomic formulas then assigned to the chemicals, it would be possible to create the drug quinine by somehow combining two molecules of napthylamine with one of water. Perkin decided to try to synthesise quinine by oxidising allyltoluidine with dichromate. It is now known that the complex structures of organic molecules make such a naïve approach based purely on atomic formulas useless. When Perkin failed, he decided to try oxidising aniline with dichromate (it was subsequently discovered that the aniline he used was contaminated with toluidine, with mauveine being created by the oxidation of both together), and discovered that the product obtained was a useful dye. Mauveine, as it became known, was the first cheap and stable purple dye, and when Perkin commercialised it a colour that had been traditionally associated with the richest in society became accessible to all. It was the first of the so-called azo dyes, which were among the first products of the modern chemical industry.

Perkin patented his dye and persuaded his relatives to fund him in creating a factory, near Greenford in west London. He continued to work in chemistry, discovering the “Perkin reaction” to make cinnamic acid from acetic anhydride and benzaldehyde, and developing a way to commercially synthesise the natural dye alizarin (from the madder plant) from coal tar. Unfortunately, a rival German team simultaneously developed the same process and patented it one day earlier! Perkin’s lasting fame can be gauged by the fact that the Perkin Medal, the most important American prize for organic chemistry, and Perkin Transactions, for many years the British Royal Society of Chemistry’s main scholarly journal on organic chemistry, were both named after him. Mauveine

Perkin’s mauveine is a mixture of up to twelve different compounds containing N-phenylphenazinium ring systems with additional amine and sometimes methyl groups. The structures of the most important two were not clearly discovered until 1994, because an incorrect structure of unclear origin had been repeatedly cited in the literature and assumed to be right. They are seen in the diagram, with the group "R" being a hydrogen atom in one of them, and a methyl (CH3) group in the other.

Further reading at the British Library:

Perkin, W.H. (1901). The origin of the coal-tar colour industry, and the contributions of Hofmann and his pupils. In Memorial lectures delivered before the Chemical Society 1893-1900 (pp. 596-637). London: Gurney & Barrow. Shelfmark W1/9939 – Perkin’s own description of his famous first synthesis of mauveine, the discussions that provoked the experiment, and his later career in the chemical industry.

Perkin, W.H. (1879). On mauveine and allied colouring matters. Journal of the Chemical Society, Transactions, 35, 717-32. Shelfmark (P) JB 00-E(8) – Perkin’s description of the physical properties and chemical reactions of mauveine.

Perkin, W.H. (1858). On the purple dye obtained from coal-tar. In Report of the twenty-eighth meeting of the British Association for the Advancement of Science. Paper presented at the British Association for the Advancement of Science, Leeds, September 1858 (p.58). London: John Murray. Shelfmark Ac.1181. – Perkin’s first brief scholarly announcement of mauveine.

Perkin, W.H. (1856). Producing a new coloring matter for dyeing with a lilac or purple color stuffs of silk, cotton, wool, or other materials. GB1984/1856. Shelfmark IP Reserve South – Perkin’s patent for the creation of azo dyes and dyeing techniques using them.

Meth-Cohn, O. and Smith, M. (1994). What did W. H. Perkin actually make when he oxidised aniline to obtain mauveine? Journal of the Chemical Society, Perkin Transactions 1, pp. 5-7. Shelfmark (P) JU 00 –E(9), also available in online subscription – the first investigation of Perkin’s preserved original samples of mauveine under modern spectroscopic techniques to determine the exact structures.

Written by Philip Eagle

05 July 2017

A tribute to Anne McLaren

Add comment

Dame_Anne_McLaren_©_James_Brabazon
Dame Anne McLaren. Copyright © James Brabazon

 

To publicise the upcoming event: Anne McLaren: Science, Ethics and the Archive, to be held at the British Library on 20 July, 6.30-8.00 pm, we present a guest-post by Professor Marilyn Monk, UCL Emeritus Professor of Molecular Embryology, with her personal recollections of Anne McLaren.

       
It is a great honour to have this opportunity to give my own personal tribute to Anne McLaren. Anne was my role model and my mentor over so many years. Not only in my scientific life - although her influence here was huge - but she was such a tower of strength and support for me over many difficult times. ‘Water under the bridge Marilyn. Water under the bridge’, she would say, encouraging me to move on.

I worked closely with Anne in her Medical Research Council Mammalian Development Unit for 18 years from 1974 to 1992 and I remained in contact with her thereafter. I would often email or phone Anne – ‘what do you think of this Anne?’ – questions about science, about life, about new ideas. And she would always respond with words of wisdom and support.

Right from the beginning Anne accepted me unconditionally. My first encounter with Anne was my phone call to her in Edinburgh in 1974. At that time, Anne was in Animal Genetics at Kings Buildings in Edinburgh and I was in the Molecular Biology Department working on DNA replication and repair in bacteria and on slime mould aggregation. But, in 1974, our MRC unit in Molecular Biology in Edinburgh closed with the retirement of our director, Bill Hayes. The MRC told me that I could relocate to another MRC unit that interested me and that would have me. I visited many MRC units and talked to various people who were encouraging but nothing seemed to be right for the interests and expertise in research I had at the time. Then Harry Harris at the Galton Laboratory suggested I contact Anne McLaren as she was just about to move from Edinburgh to London to start up a new MRC Mammalian Development Unit at the Galton. I knew nothing at all about development - let alone mammalian development. A move to mice and their embryos would be a huge leap both intellectually and technically.

In any case, I plucked up courage to phone Anne in Edinburgh in 1974. I remember everything about that moment when I phoned Anne because I was holding onto my last hopes of continuing as a scientist. I introduced myself, told her my problems, and asked her if she would consider taking me on in her new MRC Unit in London. I told her I knew nothing about mice – I had only worked with bacteria, viruses and amoebae. She said, ‘Yes of course you can join me. You must!’ I was flabbergasted. So overjoyed I could not speak. She did not even know me. She didn’t ask to meet me. But she had no reservations. She’d give me a chance. But this says it all about Anne - a tower of strength and support, particularly for women scientists (in my experience, it can still be difficult, even today to be a woman in science).

But as well as being a tower of strength, Anne was patient, tolerant, allowing, and very wise. And of course - very intelligent. I would prefer to talk about science and life and new ideas with Anne than anyone else I know. And Anne was a great listener. She always liked my ‘What if’ ideas and 'Why' questions. She thought that some of them were 'whacky' (her word) but always interesting.

Another great quality of Anne’s was her wicked sense of humour and sense of fun. Over the years, she would only have to raise one eyebrow in my direction over some happening, or strange remark from an unsuspecting visitor, and it would be difficult for me not to collapse in giggles. I always knew what she meant by the raised eyebrow. I felt privileged to be a secret accomplice to the raised eyebrow.

I know there are so many others who will have had the same wonderful experiences of Anne and will be feeling the way that I do. In the days and weeks after Anne died, so many people shared that they had just been in touch with her about this or that – about meeting soon for a meal and a talk about science and about life, or asking her advice on various issues, or arranging some new initiative. I have realised that Anne was looking after all of us pretty much all of the time. She made each one of us feel special.

Her energy and engagement with life and people was phenomenal. In addition she had extra-ordinary self-discipline and I had a lot to learn from her here. I never once saw Anne nod off in a seminar. She listened carefully to everything everyone said and her responses were always measured, incisive and invariably ‘spot on’. She never said a bad word about anybody that I can remember. She never complained.

When I joined Anne’s Unit, I was already a molecular biologist of some 15 years. But as such, I was used to working with millions of cells, bacteria or amoeba. We used to call it bucket biochemistry. The huge challenge was to bring molecular biology to the few cells of the embryo and even to the single cell. And we did it. I guess the hallmark of my research with Anne was to make the molecular techniques a million times more sensitive so we could look at specific enzyme activity, specific gene expression, and specific gene mutation or modification in just a few cells, and even a single cell, of the embryo. Once these single-cell molecular technologies were established, we could apply them to different developmental and biological questions and many insights into mammalian development followed during the years I was at the Galton. We began with establishing the cycle of X chromosome activation and inactivation as a model for gene expression and its regulation in early development. From there, we made many new discoveries such as the late origin of the germ line (anti Weissman doctrine). differential methylation of the active and inactive X chromosomes (beginning of mechanisms of epigenetics), imprinting and transgenerational inheritance of acquired characteristics (Lamarkian inheritance) and the discovery of methylation erasure in early development and again in the germ line thus bringing development back to tabula rasa - totipotency. Clinically we applied our single cell molecular biology to pioneering experiments for preimplantation diagnosis of genetic disease. My colleagues and co-workers during these years in Anne's Mammalian Development Unit were Mary Harper, Asangla Ao, Andrew McMahon, Mandy Fosten, Susan Lindsay, Maurizio Zuccotti, Mark Grant, Michael Boubelik.and Cathy Holding. Anne always gave me a completely free rein and encouraged me in whatever I wanted to do. I still miss her.

Marilyn Monk
UCL Emeritus Professor of Molecular Embryology


Both the Anne McLaren and Marilyn Monk papers are available to readers through the British Library Explore Archive and Manuscripts catalogue. The Mclaren papers can be found at Add MS 83830-83981 and Add MS 89202 and the Monk papers are available at Add MS 89158.

08 June 2017

Untangling academic publishing

Add comment

Untangling
Untangling Academic Publishing logo. Creator uncredited, published under CC-BY

On the 25th of May we attended the launch of the report Untangling Academic Publishing by Aileen Fyfe and others (https://zenodo.org/record/546100). The report describes the history of scholarly publishing from the nineteenth century to the modern era of open access, “crises” in affordability of journals and books, and controversy over commercial publishers’ profits and competing business models.

The report discusses the post-WWII evolution of scholarly publishing from an original model where learned societies saw dissemination of research results as simply a part of their essential activity, with no expectations of profit and many copies of journals distributed free to public, academic and scholarly subscription libraries. After WWII an alliance became formed with profit-seeking scholarly publishers, under the pressure of the increasing quantity of publically-funded academic research and increasingly large numbers of universities and professional researchers in the developed world, and a growing proliferation of subdisciplines. Commercial publishers turned scholarly publication into a profitable business by setting up journals for subdisciplines without their own journals or learned societies, selling to institutions, and internationalising the market.

It was during this time that the current system of peer review was developed, and publication metrics became increasingly used to assess the prestige of individual academics and reward them with career progression and funding.

However, since the 1980s this period of close association between the interests of scholars and commercial publishers has ended, due to further expansion of the research base, reduced library budgets due to inflation and cuts in funding, and in the UK specifically issues related to exchange rates. University libraries have struggled to afford journal subscriptions and monograph purchases, leading to a vicious circle of declining sales and increasing costs. Increasingly scholars at all but the wealthiest institutions have found themselves unable to legally obtain material that they need to read, and resentment of the profit margins made by the “big four” commercial scholarly publishers in particular has developed.

Hopes that digital publication would allow cost-cutting have failed to materialise, with publishers arguing that the actual costs of distributing and printing hard copy publications are relatively small compared to editorial costs, and that providing online access mechanisms with the robustness and additional features that users want is not as cheap as some initial enthusiasts assumed. Open access, which covers a variety of business models not based on charging for access at the point of use, has been promoted for almost twenty years, but has failed to replace subscription publishing or, to a great extent, to challenge the market dominance of major commercial publishers, with much open access publishing based on the “gold” business model funded by article processing charges paid by authors or research funders, often offered by commercial publishers as an alternative. Hence universities often find themselves faced with paying both subscriptions and article processing charges instead of just subscriptions, and mechanisms offered by publishers to offset one against the other have been criticised as lacking transparency.

At the event, there were presentations by Dr. Fyfe, her co-author Stephen Curry (whose views can be found here), and David Sweeney, Executive Chair Designate of Research England. Mr. Sweeney welcomed the report for describing the situation without demonising any parties, and pointed out that publishers are adding value and innovating. He suggested that a major current issue is that academics who choose how to publish their work have no real connection to the way that it is paid for – either by their institutional libraries paying subscriptions or by funders paying APC’s – and hence are often not aware of this as an issue. It was pointed out in discussion after the event that the conversation about publishing models is still almost completely among librarians and publishers, with few authors involved unless they are very interested in the subject – the report is aimed partly at raising awareness of the issues among authors.

The general argument of the report is that it is time to look again at whether learned societies should be taking more of a role in research dissemination and maybe financially supporting it, with particular criticism of those learned societies who contract out production of their publications to commercial publishers and do not pay attention to those publishers’ policies and behaviour. Although there is no direct allusion, it is interesting that soon after the report’s launch, this post was published on Scholarly Kitchen, discussing the concept of society-funded publication and putting forward the name of “diamond open access” for it.

18 May 2017

Local heroes: Sir Henry Bessemer - Islington and St Pancras inventor

Add comment

Bessemer spy
Sir Henry Bessemer, caricature by "Spy" (Leslie Ward)

On Tuesday evening Philip attended an event at City, University of London, for the unveiling of a blue plaque to the inventor and entrepreneur Sir Henry Bessemer. Bessemer lived for some time in a house at Northampton Square in Islington, in a block that was demolished after World War II for the construction of the university’s current main entrance building. When the main entrance was reconstructed recently, archaeological investigation confirmed that Bessemer’s home had been directly on its site. After the plaque unveiling, Dr. Susan Mossman from the Science Museum delivered a lecture on Bessemer’s life, from which much of the information in this post comes.

Bessemer is best known for his revolutionary process for steel manufacture, by blowing air through molten pig iron in an egg-shaped converter, to oxidise away most of the carbon in the pig iron. This left steel with the correct proportion of carbon to make it a useful metal. The process was covered by several British patents in 1855-6, but especially GB2321/1855 and GB2768/1855. These patents are not online, but you can see digital copies of them if you come to our reading rooms.

Bessemer preferred to licence his patent rather than build an ironworks himself, but many early licensees failed, and the process was considered a flop until he constructed an ironworks in Baxter Road in Saint Pancras, close to where the British Library is now, and began selling steel at far lower prices than anyone else could manage. It turned out that the process as Bessemer first conceived it was not suitable for iron containing high levels of phosphorus impurities, which was true for metal from ore mined in Northern England. One answer was to oxidise away the contaminants, which also destroyed the carbon already in the pig iron, and then add new carbon and manganese. This process was developed by Robert Forester Mushet, whose business failed but whose process Bessemer took over once Mushet’s patent expired. Bessemer was finally, reportedly shamed by Mushet’s daughter, persuaded to give Mushet a pension. The second answer was the Gilchrist-Thomas process, which lined the converter with alkaline stone, causing the acidic phosphorus compounds in the iron to form compounds that precipitated out of the steel and into the slag. With these further refinements Bessemer’s process became licenced worldwide, making Bessemer hugely rich, and did not become completely obsolete until the late twentieth century.

Bessemer Kelham
Bessemer Converter at Kelham Island Museum, Sheffield

Bessemer had already come up with many other inventions before his steel process, and would continue to do so afterwards. The most lucrative was his first real success, before steel, a method for making bronze powder for metallic paints on an industrial scale, hugely reducing the cost of a product which had previously been made by hand-grinding by craftworkers in Germany. Bessemer kept the process secret for decades, by ensuring that the machines were kept in four sealed rooms with strictly limited access, and that few people other than himself knew more than one of the four stages of the process. This helped him keep a monopoly much longer than the fourteen years he would have had if he’d patented the process. Bessemer was a shrewd businessman who would only continue working in a field as long as it made money. Once competitors had caught up with him he would move on to something else.

Another of Bessemer’s claims to fame was his early investment in “Parkesine”, the first commercialised artificial plastic, a form of celluloid. The business was a failure due to initial low quality, but remains historically important. At the time of his death, Bessemer was having what would have been the world’s second largest telescope constructed at his estate in Denmark Hill, but it was abandoned when he passed away.

Bessemer tomb
Bessemer's tombstone in West Norwood Cemetery (photograph by Robert Mason, CC0 licence)

Bessemer remains an inspiring figure for modern British inventors, but the story of his steel process also demonstrates some important lessons that dispel some of the romantic ideas of the inventor. Firstly, always be open to taking on the ideas of others instead of believing your own ideas to be perfect and unimprovable. Second, you may well have to start your own business instead of assuming that other people will be falling over themselves to licence your idea. Third, always think about whether an invention will make money, as well as its abstract beauty. And fourth, it helps to have plenty of money to invest before you start!

Further reading:

Patents by Henry Bessemer, in the Business & IP Reading Room at St Pancras.

An earlier blog post by Dr. Mossman on Bessemer’s life.

Bessemer, H and Bessemer, H Jr. Sir Henry Bessemer, FRS: an autobiography. London: Engineering, 1905. Available for order to our Reading Rooms at 10825.k.7 or Wq3/9544.

Bodsworth, C (Ed.). Sir Henry Bessemer: father of the steel industry. London: Institute of Materials, 1998. Available for order to our Reading Rooms at YK.1998.b.6654 or 2247.795000 690.

05 May 2017

The first British-made satellite was launched fifty years ago today

Add comment

Scout rocket
A NASA Scout rocket of the type used to launch Ariel 3. Used under the NASA copyright policy.


Today is the fiftieth anniversary of the launch of Ariel 3, the first satellite to be designed and constructed in the UK. The two previous Ariel satellites had been designed in Britain but constructed by NASA. It was launched by NASA in the USA on 5th May 1967, carrying five scientific experiments in the fields of astronomy and atmospheric studies. It was shut down in September 1969 and re-entered Earth’s atmosphere on 14th December 1970.

 

The international collaboration took place under COSPAR, the Committee on Space Research. Its experiments were:

An investigation of the electron density and temperature in the ionosphere (the portion of the upper atmosphere where air molecules are ionised by solar radiation) using a Langmuir probe, and a second experiment using a parallel-plate capacitor, both led by Professor James Sayers of the University of Birmingham.

A mapping of large-scape radio noise sources in the Milky Way, led by Professor F Graham Smith of the University of Cambridge.

Measuring the concentration of oxygen in the atmosphere at heights of 150-300 km, led by Dr. Kenneth H Stewart of the Meteorological Office.

Measuring radio emissions from thunderstorms and other natural terrestrial sources at six key frequencies, led by John A Murphy of the Rutherford Appleton Laboratory.

A worldwide survey of VLF radio signals, and an investigation of the effects of the propagation path on a 16kHz ground-based radio transmitter, led by Professor Thomas R Kaiser of the University of Sheffield.

For more information on the satellite, see the NASA catalog entry on it. Contemporary descriptions of the satellite and the results of the experiments were contained in two special journal issues:

Radio and Electronic Engineer, 1968, 35 (1). British Library shelfmark STM (P) RT 40-E(7) and DSC 7229.400000, also available online in our Reading Rooms through our subscription to IEEE Xplore.

Proceedings of the Royal Society, 1969, 311 (1507). British Library shelfmark (P) JA 00-E(12), also available online in our Reading Rooms through JSTOR.

17 March 2017

Old issues in new guises: Dame Anne McLaren and the embryo research debate

Add comment

Following the birth of the world’s first baby by In Vitro Fertilisation (IVF), Louise Brown, in 1978, the research on human embryos that had made this possible became the subject of scrutiny and unease from both the public and politicians. This led the government to task Dame Mary Warnock with the chairing of a committee consisting of medics, social workers, lawyers and clerics in 1982, to set out a guideline for the legislation on IVF and embryo research in the UK. The report was enacted in the 1990 Human Fertilisation and Embryology Act. One of the report’s most lasting and controversial recommendations was a limit on research on human embryos in vitro beyond fourteen-days – the so-called ’fourteen-day rule’.

McLaren-image-1
Detail of the letter to Anne McLaren inviting her to take part in the Warnock Committee. (1982). (Add MS 89202/8/1). Crown Copyright/estate of Anne McLaren.

This law has been in force for more than twenty-five years. For scientists, there had been no need to contest it, since scientists had not come close to culturing an embryo anywhere near to the fourteen-day limit. The equilibrium was only disrupted at the end of last year, when a research group at Cambridge University led by Magdalena Zernicka-Goetz claimed to have developed a method of culturing live human embryos for thirteen days, only stopping their experiment at this point to comply with the fourteen-day rule. This possibility has recharged the debates over the desirability of embryo research and the extent to which it should be regulated.

In the face of these reopened debates on the ethics of embryo research, it is important to understand the premises and arguments that shaped the current legislation. These arguments, at first glance, appear to be predominantly scientific.

Developmental biologist Dame Anne McLaren (1927-2007) was the only research scientist serving on the Warnock Committee, and played an important role in providing the lay-committee with a scientific understanding of the processes of embryo development that proved definitive in the committee’s efforts to convince ministers of the validity of the fourteen-day rule. McLaren made the case for the rule by arguing that the fourteenth day was a clearly distinguishable step towards individuation in the development of the embryo. Fourteen days, for example, sees the onset of gastrulation, a point at which the embryo can no longer divide into identical twins. Fourteen days also falls well before the beginnings of what will become the central nervous system, and so there is no chance that the embryo could experience pain. 

McLaren-image-2
Title page of Anne McLaren’s draft for ‘Comments on the use of donated eggs fertlilized specifically for research purposes’. (c. 1982). (Add MS 89202/8/1) Copyright the estate of Anne McLaren.

Yet, as Lady Warnock has stressed, fourteen days is by no means a landmark set in stone. McLaren could have made a well-substantiated scientific argument for a different cut-off point- the embryo, for example, is just as incapable of experiencing pain at twenty-eight days. As Lady Warnock stated at a 2016 Progress Educational Trust conference on the topic, it was merely important to set a time limit, to provide clarity through law, so that the public would feel reassured that research would not progress untethered. The fourteen-day rule did therefore not express a moral distinction for the human embryo based on biological facts, but emphasised a specific part of the biological process in order to make a practical compromise – as Warnock writes in the committee’s report: ‘What is legally permissible may be thought of as the minimum requirement for a tolerable society’ (1985, p.3). 

Understanding the arguments McLaren made in the 1980s will shed light on what is required of legislation today—that it should take into account the current political climate and public sentiment, perhaps before making arguments about the ethics of research based on biological facts. 

The Anne McLaren papers at the British Library consist of letters, notes, notebooks and offprints. There is currently one tranche (Add MS 83830-83981) available to readers through the British Library Explore Archives and Manuscripts catalogue with a second tranche (Add MS 89202) planned for release at the end of April 2017. Additionally one of Anne McLaren’s notebooks containing material from 1953 to 1956 (Add MS 83843) is on long-term display in the British Library’s Treasures Gallery. 

Anne McLaren’s scientific publications and books, along with an oral history interview conducted in February 2007, are available to readers via the British Library Explore catalogue.

 This post forms part of a series on our Science blog highlighting some of the British Library’s science collections as part of British Science Week 2017.

Posted by Marieke Bigg. Marieke is an MPhil student in sociology at the University of Cambridge and works under the supervision of Prof. Sarah Franklin. Marieke’s MPhil dissertation and PhD will both explore the contributions made by Dr Anne McLaren to the debate over human fertilisation and embryology in the 1980s.