Digital scholarship blog

3 posts categorized "Decolonising"

23 October 2020

BL Labs Public Award Runner Up (Research) 2019 - Automated Labelling of People in Video Archives

Add comment

Example people identified in TV news related programme clips
People 'automatically' identified in digital TV news related programme clips.

Guest blog post by Andrew Brown (PhD researcher),  Ernesto Coto (Research Software Engineer) and Andrew Zisserman (Professor) of the Visual Geometry Group, Department of Engineering Science, University of Oxford, and BL Labs Public Award Runner-up for Research, 2019. Posted on their behalf by Mahendra Mahey, Manager of BL Labs.

In this work, we automatically identify and label (tag) people in large video archives without the need for any manual annotation or supervision. The project was carried out with the British Library on a sample of 106 videos from their “Television and radio news” archive; a large collection of news programs from the last 10 years. This archive serves as an important and fascinating resource for researchers and the general public alike. However, the sheer scale of the data, coupled with a lack of relevant metadata, makes indexing, analysing and navigating this content an increasingly difficult task. Relying on human annotation is no longer feasible, and without an effective way to navigate these videos, this bank of knowledge is largely inaccessible.

As users, we are typically interested in human-centric queries such as:

  • “When did Jeremy Corbyn first appear in a Newsnight episode?” or
  • “Show me all of the times when Hugh Grant and Shirley Williams appeared together.

Currently this is nigh on impossible without trawling through hundreds of hours of content. 

We posed the following research question:

Is it possible to enable automatic person-search capabilities such as this in the archive, without the need for any manual supervision or labelling?

The answer is “yes”, and the method is described next.

Video Pre-Processing

The basic unit which enables person labelling in videos is the face-track; a group of consecutive face detections within a shot that correspond to the same identity. Face-tracks are extracted from all of the videos in the archive. The task of labelling the people in the videos is then to assign a label to each one of these extracted face-tracks. The video below gives an example of two face-tracks found in a scene.

Two face-tracks found in British Library digital news footage by Visual Geometry Group - University of Oxford.

Techniques at Our Disposal

The base technology used for this work is a state-of-the-art convolutional neural network (CNN), trained for facial recognition [1]. The CNN extracts feature-vectors (a list of numbers) from face images, which indicate the identity of the depicted person. To label a face-track, the distance between the feature-vector for the face-track, and the feature-vector for a face-image with known identity is computed. The face-track is labelled as depicting that identity if the distance is smaller than a certain threshold (i.e. they match). We also use a speaker recognition CNN [2] that works in the same way, except it labels speech segments from unknown identities using speech segments from known identities within the video.

Labelling the Face-Tracks

Our method for automatically labelling the people in the video archive is divided into three main stages:

(1) Our first labelling method uses what we term a “celebrity feature-vector bank”, which consists of names of people that are likely to appear in the videos, and their corresponding feature-vectors. The names are automatically sourced from IMDB cast lists for the programmes (the titles of the programmes are freely available in the meta-data). Face-images for each of the names are automatically downloaded from image-search engines. Incorrect face-images and people with no images of themselves on search engines are automatically removed at this stage. We compute the feature-vectors for each identity and add them to the bank alongside the names. The face-tracks from the video archives are then simply labelled by finding matches in the feature-vector bank.

Face-tracks from the video archives are labelled by finding matches in the feature-vector bank.
Face-tracks from the video archives are labelled by finding matches in the feature-vector bank. 

(2) Our second labelling method uses the idea that if a name is spoken, or found displayed in a scene, then that person is likely to be found within that scene. The task is then to automatically determine whether there is a correspondence or not. Text is automatically read from the news videos using Optical Character Recognition (OCR), and speech is automatically transcribed using Automatic Speech Recognition (ASR). Names are identified and they are searched for on image search engines. The top ranked images are downloaded and the feature-vectors are computed from the faces. If any are close enough to the feature-vectors from the face-tracks present in the scene, then that face-track is labelled with that name. The video below details this process for a written name.

Using text or spoken word and face recognition to identify a person in a news clip.

(3) For our third labelling method, we use speaker recognition to identify any non-labelled speaking people. We use the labels from the previous two stages to automatically acquire labelled speech segments from the corresponding labelled face-tracks. For each remaining non-labelled speaking person, we extract the speech feature-vector and compute the distance of it to the feature-vectors of the labelled speech segments. If one is close enough, then the non-labelled speech segment and corresponding face-track is assigned that name. This process manages to label speaking face-tracks with visually challenging faces, e.g. deep in shadow or at an extremely non-frontal pose.

Indexing and Searching Identities

The results of our work can be browsed via a web search engine of our own design. A search bar allows for users to specify the person or group of people that they would like to search for. People’s names are efficiently indexed so that the complete list of names can be filtered as the user types in the search bar. The search results are returned instantly with their associated metadata (programme name, data and time) and can be displayed in multiple ways. The video associated with each search result can be played, visualising the location and the name of all identified people in the video. See the video below for more details. This allows for the archive videos to be easily navigated using person-search, thus opening them up for use by the general public.

Archive videos easily navigated using person-search.

For examples of more of our Computer Vision research and open-source software, visit the Visual Geometry Group website.

This work was supported by the EPSRC Programme Grant Seebibyte EP/M013774/1

[1] Qiong Cao, Li Shen, Weidi Xie, Omkar M. Parkhi, and Andrew Zisserman. VGGFace2: A dataset for recognising faces across pose and age. In Proc. International Conference on Automatic Face & Gesture Recognition, 2018.

[2] Joon Son Chung, Arsha Nagrani and Andrew Zisserman. VoxCeleb2: Deep Speaker Recognition. INTERSPEECH, 2018

BL Labs Public Awards 2020

Inspired by this work that uses the British Library's digital archived news footage? Have you done something innovative using the British Library's digital collections and data? Why not consider entering your work for a BL Labs Public Award 2020 and win fame, glory and even a bit of money?

This year's public and staff awards 2020 are open for submission, the deadline for entry for both is Monday 30 November 2020.

Whilst we welcome projects on any use of our digital collections and data (especially in research, artistic, educational and community categories), we are particularly interested in entries in our public awards that have focused on anti-racist work, about the pandemic or that are using computational methods such as the use of Jupyter Notebooks.

19 October 2020

The 2020 British Library Labs Staff Award - Nominations Open!

Add comment

Looking for entries now!

A set of 4 light bulbs presented next to each other, the third light bulb is switched on. The image is supposed to a metaphor to represent an 'idea'
Nominate an existing British Library staff member or a team that has done something exciting, innovative and cool with the British Library’s digital collections or data.

The 2020 British Library Labs Staff Award, now in its fifth year, gives recognition to current British Library staff who have created something brilliant using the Library’s digital collections or data.

Perhaps you know of a project that developed new forms of knowledge, or an activity that delivered commercial value to the library. Did the person or team create an artistic work that inspired, stimulated, amazed and provoked? Do you know of a project developed by the Library where quality learning experiences were generated using the Library’s digital content? 

You may nominate a current member of British Library staff, a team, or yourself (if you are a member of staff), for the Staff Award using this form.

The deadline for submission is 0700 (GMT), Monday 30 November 2020.

Nominees will be highlighted on Tuesday 15 December 2020 at the online British Library Labs Annual Symposium where some (winners and runners-up) will also be asked to talk about their projects (everyone is welcome to attend, you just need to register).

You can see the projects submitted by members of staff and public for the awards in our online archive.

In 2019, last year's winner focused on the brilliant work of the Imaging Team for the 'Qatar Foundation Partnership Project Hack Days', which were sessions organised for the team to experiment with the Library's digital collections. 

The runner-up for the BL Labs Staff Award in 2019 was the Heritage Made Digital team and their social media campaign to promote the British Library's digital collections one language a week from letters 'A' to 'U' #AToUnknown).

In the public Awards, last year's winners (2019) drew attention to artisticresearchteaching & learning, and community activities that used our data and / or digital collections.

British Library Labs is a project within the Digital Scholarship department at the British Library that supports and inspires the use of the Library's digital collections and data in exciting and innovative ways. It was previously funded by the Andrew W. Mellon Foundation and is now solely funded by the British Library.

If you have any questions, please contact us at

18 September 2020

Hiring a new Wikimedian in Residence

Add comment

Are you passionate about helping people and organisations build and preserve open knowledge to share and use freely? Have you got experience organising online events, workshops and training sessions? Then you may be interested in applying to be our new Wikimedian in Residence.

In collaboration with Wikimedia UK, the British Library is working on contributing and improving content, data, and metadata, across the Wikimedia family of platforms.

I recently ran a “World of Wikimedia” series of remote guest lectures for Library staff, to inspire my colleagues, and to further assist with this work, the Library is hiring a Wikimedian in Residence to join the Digital Scholarship team, on a part-time basis (18 hours per week) for 12 months.

8 people standing outside the entrance of the British Library
A Wikipedians in Residence group photo, taken at GLAMcamp London, 15-16 September 2012 (photo by Rock drum, Wikimedia Commons / CC-BY-SA-3.0)

Since hosting a successful Wikipedian in Residence in 2012 (this was Andrew Gray, who is standing second in from the right in the above photo, you can read about his residency here), many staff across the British Library have engaged with Wikimedia projects, holding edit-a-thons, and adding digital collections to Wikimedia Commons.

Now, with generous funding from the Eccles Centre for American Studies, we are looking for a proactive and self-motivated individual who can coordinate and support these activities. Furthermore, we are hoping for someone who can really help the Library to actively engage with the Wikidata, Wikibase and Wikisource platforms and communities. Increasing the visibility and enrichment of data, collections, and research materials, which the Library holds about underrepresented populations.

If this sounds like something you can do, then please do apply. The vacancy ref is 03423, closing date is 8th October 2020 and the interview date is 23rd October 2020. The post is part time 2.5 days per week, for 12 months, and initially work will be done remotely, in light of the current COVID 19 situation. However, longer term, it is likely that there will be a mix of remote and on site working.

During my time working in the Library, we have hosted a number of wonderful residencies, including Christopher Green, Rob Sherman and Sarah Cole, who each brought fresh skills, knowledge and enthusiasm, into the Library. So I very much hope that this new residency will do the same.

This post is by Digital Curator Stella Wisdom (@miss_wisdom