Science blog

Discover Science at the British Library

Introduction

We are the British Library Science Team; we provide access to world-leading scientific information resources, manage UK DataCite and run science events and exhibitions. This blog highlights a variety of the activities we are involved with. Follow us on Twitter: @ScienceBL. Read more

06 November 2019

Local Heroes - Trevithick's steam locomotive demonstration of 1808, "Catch Me Who Can"

In September 1808, the Cornish engineer Richard Trevithick exhibited and operated a steam engine called "Catch Me Who Can" on a circular track of about 100 feet in radius, on a site to the south of Euston Road within walking distance of the British Library. This was the first time in the world that a steam locomotive was used to haul paying passengers on a railway. (It was not the first time that passengers had been carried by steam at all, as five years earlier Trevithick had carried passengers on a steam-powered road vehicle, the London Steam Carriage, and in 1804 had used the world's first steam railway locomotive to haul employees of the Penydarren ironworks in Wales.)

Trevithick was the pioneer of the use of high-pressure steam in power, as advances in metal refining had made it possible to create boilers that could safely contain it. His stationary engines were much more efficient than the earlier low-pressure engines of Newcomen and Watt.

It is not clear exactly how long the locomotive operated for, but it was for at least a fortnight. A marathon operation of a continuous 24 hours was promised, but never carried out, probably due to a failure of the track. The very high entrance fee of two shillings may also have put the public off, as well as the delays in getting the demonstration working. The first advertisements had promised that the attraction would be opened in mid-July, something that might be seen as a portent of notorious later delays in London railway openings.

The site has been identified from contemporary reports and maps as probably being a field known as South Murralls, which is now somewhere under the main complex of University College London. During reconstruction of the UCL Chadwick Building a little further south-west, in 1999, a cinder pit was discovered that may have been connected to the demonstration.

Two paper tickets depicting an early steam locomotive, with handwritten notes.
Original tickets to the Catch Me Who Can demonstration. Photograph by Science Museum Group, used under a CC-BY-SA license

The only reliable depiction of what the locomotive looks like seems to have been a drawing on the entrance tickets, a few of which have survived. The oldest surviving drawing of the locomotive in action was made in 1872 and appears to have been imaginative, with the locomotive based on the ticket depiction. Famous drawings of the scene attributed to the artist and cartoonist Thomas Rowlandson and dated "1809" are now recognised as probably being early-twentieth-century forgeries. More recently, a contemporary drawing by the artist John Claude Nattes now in the collection of the Guildhall Library under the shelfmark Nattes Drawings No. 50 has been recognised by J P S Buckland, and confirmed by John Liffen, to probably show the boiler of the locomotive before its final assembly. It is very similar to the boiler of a Trevithick stationary steam engine of the same era now at the Science Museum.

A group based in Bridgnorth, where the original engine is thought to have been constructed, has built a replica based on the ticket depiction and other locomotives by Trevithick for which detailed drawings and models have survived.

A four-wheeled steam locomotive stands in an industrial-looking shed
The Catch Me Who Can replica at Barrow Hill. Photograph by Hugh Llewelyn under a CC-BY-SA license.

After the end of the experiment, Trevithick seems to have given up interest in steam locomotion. It may have been because he did not get the amount of money or support that he hoped for, but he was also involved in a range of other projects at the time, including an attempt to build a Thames Tunnel (in which he was nearly drowned in a cave-in) and a short-lived engineering works in Limehouse. In 1810, after a serious illness, Trevithick returned to his home in Cornwall, and much of the rest of his life was spent in mining projects in South America.

Sources and further reading:

Liffen, J. Searching for Trevithick's London railway of 1808, in Boyes, G. (Ed.), Early railways 4, Papers from the Fourth International Early Railway Conference, Sudbury: Six Martlets Publishing, 2010, pp. 1-29. Shelfmark YC.2011.a.3466
Payton, P. Trevithick, Richard. In Oxford Dictionary of National Biography, most recently updated 2007, https://doi.org/10.1093/ref:odnb/27723, available electronically in the British Library reading rooms
Tyler, N. Trevithick's circle, Transactions of the Newcomen Society, 2007, 77(1), pp. 101-113. Available electronically in the British Library reading rooms

15 October 2019

New Scientist Live 2019

New Scientist Live 2019 logo
On Friday 11th October, I went to the New Scientist Live show, which is an annual event for the general public about the wonders of science. There are a series of lecture slots, and an exhibition from universities, learned societies, technology companies, commercial and charitable science "experience" organisation, and makers of science-related ornaments and clothing.

The talks I attended were all very interesting. Tom Crawford of Tom Rocks Maths described his work modelling the flows of rivers into oceans as a means of tracking plastics and other forms of pollution, to find the best places to collect them. The flows are controlled primarily by the Earth's rotation, outflow speed, and the density of the river water relevant to the sea.


Sim Singhrao of the University of Central Lancashire described her work on the possible contribution of poor oral hygiene to Alzheimer's disease. The bacterium Porphyromonas gingivalis, which contribures to gum disease, has been found in the brain of Alzheimer's patients, and it is suggested that Alzheimer's disease may be worsened by the action of the immune system in the brain, or protein fragments left behind when the bacteria feed.


Jess Wade of Imperial College, who works on organic semiconducting materials which can be used in products such as flexible displays, gave a lecture on chirality in science, from Louis Pasteur's discovery of optical isomerism in tartaric acid to biological effects, to the possible origins of chirality in polarisation of starlight due to the rotation of galaxies, to chiral selection of electron spin and the role it may play in our nervous system.


Guillermo Rein of Imperial College described the wide range of work involved in fire science, from fires aboard NASA spacecraft, to how polymers burn, to how large buildings can survive fire without structural failure, to the problem of long-lasting peat fires and the severe air pollution that they cause in South-East Asia. His work has not just been theoretical, but has included spectacularly large experiments in both the Czech Republic and Indonesia.


Finally, Ravi Gogna of BAE described work to improve information sharing between police, social workers, health care, and schools to improve child protection and allow problems to be dealth with without heavy-handed interventions. The technology was originally used to raise flags for fraud in financial institutions.

13 September 2019

The sixtieth anniversary of the first human created object to land on the Moon, Luna 2

Earlier this year, there was much commemoration of the fiftieth anniversary of the first landing by humans on the Moon, by Neil Armstrong and Buzz Aldrin of Apollo 11. Today is the sixtieth anniversary of an earlier achievement, the first human-created object to land on the Moon (or any celestial object other than Earth). This was the Soviet probe Luna 2, which landed on the Moon on the 13th Sep 1959 (the 14th by USSR time), after being launched around one and a half days before. The third and final stage of the probe's launch rocket also hit the lunar surface, in an uncertain location.

A policed metal globe of tesellating pentagons, each marked CCCP 1959
Copy of the ball of plaques carried on Luna 2, now displayed at the Kansas Cosmosphere. Photograph by Patrick Pelletier, used under a CC BY-SA 3.0 licence.

There is also a British element to this event. Some people in the USA and other western countries had suspected that previous spaceflight achievements by the Soviet Union had been exaggerated or entirely faked for propaganda purposes. Due to this, the astronomer Bernard Lovell, the founder of the Jodrell Bank radioobservatory, acted as an independent witness to prove that Luna 2 actually had been launched and had reached the Moon.

Luna 2 was designed by the leading USSR space systems designer Sergei Korolev. The probe carried equipment to investigate the Earth's magnetic field, radiation, cosmic particles, and micrometeor impacts. A previous, similar probe, Luna 1, had been launched in January, but missed the Moon due to a failure of control of the rocket. Luna 2 successfully landed in the Palus Putredinus region. Luna 1 and Luna 2 confirmed that there was no measurable magnetic field or radiation belt around the moon. The next successful Soviet Moon probe, Luna 3, successfully orbited the moon and took the first photographs of its dark side. Later, in 1966, Luna 9 became the first human-made object to make a controlled soft landing on the moon.

Moscow Cosmos sent Lovell tracking data for Luna 2 and radio frequencies provided by USSR news reports. Jodrell Bank telescope picked up signals from satellite from claimed position exactly as required on two separate occasions. US astronomers were sceptical until Lovell held the telephone handset to the loudspeaker so that they could hear the bleeps. The apparent signal frequency of the transmissions changed due to Doppler shift exactly as predicted from acceleration of the probe under lunar gravity. The last signal was detected from 50 miles above the Moon's surface and the end of the transmission was too abrupt for the satellite to have passed behind the moon. Luna 2 hit the Moon's surface at 22:02:23 BST on 13th Sep 1959 at 7500 mph. The launching rocket also emitted a cloud of glowing vapourised sodium once it had reached 97000 miles from Earth, so that it could be more easily tracked. The probe incorporated a hollow titanium ball covered with Soviet symbols, which was intended to break up on impact and scatter them over the landing site.

An image of craters on the Moon with a close up of a probe.
The later USSR Luna 16 mission landed on the Moon, photographed by the US Lunar Reconnaissance Orbiter. Photograph used by permission from NASA for informational purposes.

Lovell, B, Here is the evidence that the Moon was hit, LIFE 47(13), 28 Sept. 1959, p. 53
Lund, T, Early exploration of the Moon: Ranger to Apollo, Luna to Lunniy, Cham: Springer, 2018. Available as an ebook in British Library Reading Rooms.