Science blog

5 posts from November 2018

27 November 2018

Cats in science

Cat image
At the end of last week, our free exhibition "Cats on the Page" opened, covering cats in all their roles in fiction and art. Here are a few examples of the roles that cats have played in science.

The most famous cat in science, of course, is the notorious Schrödinger's Cat thought experiment, put forward by the physicist Erwin Schrödinger in 1935 to express what he thought were the truly bizarre implications of the Copenhagen Interpretation of quantum physics. In this morally questionable experiment, a cat is sealed in a box with an apparatus that has a predictable probability, within a set time, of releasing cyanide gas and killing it, analogous to a subatomic particle which, until it interacts with another object, may be in one of a number of states with known probabilities. According to Schrödinger, when the probability of the cat being dead reaches 50%, it can be considered, so long as the box is not opened, to be simultaneously alive and dead. Schrödinger actually put this forward as a self-evidently ludicrous demonstation of how silly he thought that the Copenhagen interpretation was, but many physicists since have taken it entirely seriously, and single atoms or subatomic particles have been demonstrated in real-world experiments to behave as if they are in two states simultaneously.

There has been at least one recorded case of a cat being credited writer on a peer-reviewed scientific paper. In 1975, the physicist and mathematician Jack H Hethrington was irritated when a peer reviewer for Physical Review Letters pointed out that he had used "we" consistently in a manuscript on which he was the only credited author, and that the journal style guide would require this to be corrected to "I" throughout. Rather than rewrite the paper, Hethrington credited his cat, Chester, as the second author "F D C Willard", the "FD" coming from Felis domesticus and Willard from the name of Chester's father. In 1980 he published a popular science article under the name of Willard alone. In this case, it was reportedly motivated by disagreements between him and some co-authors, leading to them not wanting to credit it to any real person.

That example was not motivated by hostility, but stings based on exposing questionable degrees or dubious professional organisations by having animals "earn" qualifications have a long history. The first case seems to have taken place in 1967 when a Television Wales team investigating a bogus "English Association of Estate Agents and Valuers" successfully got them to appoint a cat named "Oliver Greenhalgh" as a fellow. British science writer Ben Goldacre has exposed the dubious nature of certain "nutritionist" qualifications by getting his cat a professional certification. To rub salt in, the cat had been dead for some time.

And finally, cats may some day have a role in protecting post-apocalyptic humans from our darker legacies if our technological civilisation collapses. A serious proposal has been made to genetically engineer cats to change colour or glow if they encounter radioactivity, and create a legend that they can detect evil, in order to prevent far-future peoples from unknowingly digging up still-hazardous nuclear waste dumps.

Posted by Philip Eagle (Subject Librarian - STM)

24 November 2018

Psychology Resources and Research Methods Workshop for Scholars


Image source: British Library Press Images

London is blessed with a rich seam of psychology research collections represented by the British Library and the London Psychology Librarians’ Group institutions.

Together curators, reference subject specialists and psychology librarians support students, researchers and professionals in advancing our understanding the the mind, brain and behavior.

You are warmly welcome to a free workshop on Monday 3 rd December at the British Library in the afternoon, focusing on psychology research resources in London.

Monday 3 December (14.00-17.00)

This workshop, for registered Readers (and those who would find it useful to register as readers for their research needs) takes place in the Eliot Training Room in the Library’s Knowledge Centre. The workshop programme is:

Part 1: Welcome to the Library and introduction to the London Psychology Librarians Group:

  • Qualitative methods in psychology research; Christine Ozolins, Neuroscience researcher, Birkbeck College
  • Psychology collections: the London Landscape; Mura Ghosh, Research Librarian, Senate House Library

14.50-15.30 Tea break (Tea provided)

Part 2 British Library Psychology Resources and Information Literacy:

  • Information literacy for psychology research; James Soderman/Paula Funnell, Liaison Librarians, Queen Mary College
  • The post graduate psychology student voice; Holly Walton, Psychology post graduate representative
  • Psychology resources in the British Library; Paul Allchin, British Library, Reference specialist,

16.30-17.00: Question & answer session.

To find out more or to book a place, please email us at: or speak to a member of staff at the Science Reference Desk.

The speakers will share their expertise on the what, where, and how of psychology research in London based libraries and the research needs of students and researchers generally.

BL flickr 11004937825

Image source:

Posted by Paul Allchin - Reference Specialist, Science.

14 November 2018

Light in the Dark Ages: Anglo-Saxon Medicine

The Anglo-Saxons and medicine (in the modern scientific sense of the word) do at first glance seem to be separated by a huge chasm of science and reason. No doctor today would recommend the use of cow dung in any circumstances! Yet, when one looks more closely, we can see that the Anglo-Saxons idea of medicine (or perhaps “healing” would be a more appropriate term) is based not just on superstition but classical teachings, folklore and practical observation. In particular, the Anglo-Saxon’s were no different from other people of the distant past in that they held on to an ancient desire to harness the healing power of plants and the world around them.

Early managed plant life, and later gardens, were for culinary and healing purposes, rather than leisure or aesthetic reasons. This is evidence from the long history of Herbals, or, in effect, botanical encyclopaedias. One of the oldest extant examples of an Herbal and healing / medical book is Bald’s Leechbook (shelfmark Royal MS 12 D XVII). One recipe from Bald’s Leechbook involves mixing wine, leek and garlic to vanquish an infected eyelash follicle, more commonly known as styes. Freya Harrison, a microbiologist, and Christina Lee, an Anglo-Saxon scholar, decided to test this Anglo-Saxon potion in laboratory conditions. The potion was tested on skin samples infected with Staphycloccus aureus which is a version of the bacteria that causes styes and the MRSA superbug. Amazingly, the potion killed 90% of the bacteria of this antibiotic-resistant superbug (C. Wilson. New Scientist, 2015). This demonstrates the Anglo-Saxons were not just blindly throwing around different ingredients in the hope of finding a cure, but were applying various potions and then noting the effects. In this case, they would have noticed what we know today as the antibacterial qualities of garlic and leek.

Bald's Leechbook

Text page from BL Royal 12 D XVII, f. 7v, Bald's Leechbook

Bald’s Leechbook also suggests that the Anglo-Saxons were aware of a longer medical tradition going back to antiquity. This can be glimpsed from a linguistic study of the text. The vernacular material provides insightful readings of Latin technical vocabulary, and also shows a knowledge of technical terms of Greek origin. However, this limited knowledge of the ancient world does create what Cayton describes as “an uneasy fusion of Classical doctrines such as the four humours, and pagan Teutonic ideas such as the worm and elfshot as carriers of disease.” (Cayton, 1977)

As the exhibition Anglo-Saxon Kingdoms: Art, Word, War makes clear, the Anglo-Saxons were much more than just a bunch of inward looking Dark Age warriors who had no knowledge of the wider world, and whose only medical experimentation involved using leeches and cow dung to solve their ailments. We can see from Bald’s Leechbook alone, that the Anglo-Saxons were involved in rudimentary observational science and had a knowledge of Latin and Greek texts.

To add a light hearted note, I should also say that the Anglo-Saxons believed in the Doctrine of Signature. This is the belief that herbs and plants that resembled parts of the body could be used to treat ailments for the corresponding body parts. I think there could be plenty of material here for a new Carry On film about the Anglo-Saxons!


Selected Bibliography

Wilson. C, (2015). ‘Anglo-Saxon remedy kills hospital superbug MRSA’. New Scientist

Cayton. H. M, (1977). Anglo-Saxon Medicine within its Social Context (University of Durham). Link to ETHOS;jsessionid=728405D3CDE4BC17210EE440A7856171?

Meaney. A. L, (1992). ‘The Anglo-Saxon View of the Causes of Illness.’ Health and Disease and Healing in Medieval Culture. Ed. Campbell. S et al (Macmillan). British Library shelf mark YK.1992.a.2007



By Ian Moore - Science Reference Team

13 November 2018

The centenary of the 1918 flu pandemic

2 Nov Contagion
A dancer in "Contagion", a piece memorialising the pandemic presented at the British Library earlier in November

This November sees not just the centenary of the end of the First World War, but the centenary of the peak of the influenza epidemic that came at its end. The 1918 flu epidemic may have killed fifty million people or more worldwide, over three times the number of people killed in the war. It is thought to have been the third worst disease epidemic ever in Europe, after the fourteenth-century Black Death and the sixth-century Plague of Justinian. 228,000 people died in the UK, with as many as a third of the population infected, although the death rate among those who fell ill was around 2.5%. 1918 was the first year since official records began that deaths in Britain outnumbered births. Epidemiological studies have shown that children whose mothers suffered flu during pregnancy suffered lifelong negative effects on their health and employment histories.

 The flu is still sometimes known as the Spanish Flu, although this is a misnomer that, even at the time, seriously upset the Spaniards. It was associated with Spain because Spain, being neutral in the war, had less media censorship than other European countries, so that the epidemic was more honestly reported. The first unambiguous cases of the pandemic broke out at a US Army base in Kansas in March 1918. The first worldwide wave continued through the spring and summer, but appeared to be no more problematic than ordinary flu. The second, far more lethal wave, occurred in September to December 1918, while a third, less serious wave took place in the first half of 1919.

However, some people have suggested that earlier outbreaks of disease may have been unrecognised early stages of the flu pandemic. Particular suspicion has been cast on an outbreak of a lung disease called at the time "purulent bronchities" which struck the Allied Powers' huge military camp at Etaples in France in early 1917, and a lethal epidemic of lung infection which hit the region of Shansi in China in the winter of 1917-8, although that was believed by local authorities at the time, and many scientists to this day, to have been pneumonic plague.

A major question, especially given the possibility of further flu pandemics in the future, is what made the 1918 virus so lethal. As well as the sheer number of fatalities, it was unusual in killing young and healthy people in large numbers, rather than those who were elderly or frail. Some people have blamed the physical and psychological stresses of the war, and in particular the long-term effects of chemical warfare, for this, but young people also died in countries which were barely affected by the war. It has been suggested that healthy people died because of a phenomenon known as "cytokine storm", where the influenza infection causes the immune system to go into such a state of extreme activity that it itself causes fatal damage to the lungs. This is more likely to happen in people with healthier immune systems, although recent work has suggested that it might be more likely in people with a specific genetic condition in which the first stage of immune response, involving the production of interferon, is unusually weak.

In 2005, the genetic code of the 1918 virus was sequenced from samples taken from the body of a woman buried in Alaska, which had been partly preserved by the cold climate. This indicated that the 1918 virus was a member of the "H1" type of flue virii. That gave rise to a new theory about the higher death rate among young people - for the previous thirty years the majority of influenza circulating worldwide had been of the "H3" type, so older people may have been more likely to have encountered H1 influenza before and had more immunity to it.

Another mystery is why the 1918 pandemic had so little apparent cultural impact at the time. The most famous deaths from the virus were the poet Guillaume Apollinaire, the artist Egon Schiele (along with his wife Edith, who was pregnant with their first child), and John McCrae, author of one of the most famous poems of WWI remembrance, "In Flanders Fields". It also had a wider historical impact. Some military historians argue that the last major German offensive in 1918 failed only because of flu among the soldiers. The British prime minister David Lloyd George nearly died, although this was covered up at the time. The Versailles Treaty might potentially have been less harsh on Germany, reducing the chances of WWII, if the US President, Woodrow Wilson, had not been incapacitated with the flu during the later part of the negotiations. And the death of the leading USSR politician and administrator Yakov Sverdlov has been said to have opened up an opportunity for Josef Stalin to begin his rise to power. Some suggest that the influenza was not seen by people in general as a separate catastrophe from the war, while others have argued that, despite the death toll, it was seen as "just the flu" in an era when death from infectious disease was still much more common than it is today.

Further reading:

Honigsbaum, M. Living with Enza. London: Macmillan: 2009. Shelfmark YC.2009.a.3229 or m08/.36952
Johnson, N. Britain and the 1918-19 influenza pandemic (Routledge studies in the social history of medicine no. 23). Abingdon: Routledge, 2006. Shelfmark YC.2007.a.11206 or 8026.519925 no. 23
Ministry of Health. Report of the pandemic of influenza 1918-19, Reports on public health and medical subjects, 1920, No. 4. Shelfmarks B.S. 17/1, (P) HF 00-E(18), or 7665.590000
Spinney, L. Pale rider. London: Jonathan Cape, 2017. Shelfmark YC.2018.a.7038, or available in British Library Reading Rooms as Legal Deposit e-Book.

Posted by Philip Eagle

12 November 2018

New psychology and nature databases on trial at the BL

Starting today, users in the British Library Reading Rooms can use two new databases from Alexander Street, which are on trial until mid-January 2019. The usage figures in the next two months will determine whether we take the databases permanently.

Psychological Experiments Online has information on some of the most famous (or notorious, given the dark conclusions of some of them) experiments in psychology since 1900, with articles, archive material, sound or video interviews with researchers and participants, and even recordings of the experiments themselves when available.

The BBC Landmark Video Collection has complete episodes of some of the BBC's most significant nature documentary series from the last fifteen years. All of them have full subtitles and searchable transcripts.

Note that to use these databases you will have to use our desk PCs within the Reading Rooms. For the full effect of sound and video material, you will need to use a PC with headphones, although most of those in the Science reading rooms are now fitted with them.

Please can you give any feedback to the enquiry desk staff, or to

Posted by Philip Eagle, Subject Librarian - STM