THE BRITISH LIBRARY

Science blog

25 posts categorized "Environmental science"

04 December 2019

Oil, storms and knowing part 2: Pliny, Franklin and the IPCC Special Report on Oceans

Add comment

This post is the second of a pair to mark the period of the 25th Conference of Parties to the UN Framework Convention on Climate Change, and is contributed by Andrea Deri, Cataloguer.

In addition to seafarers, fishers in the Mediterranean Sea applied oil as Pliny the Elder and Plutarch described. Divers released olive oil from their mouth and used the oil film on the sea surface as a ‘skylight’ for underwater fishing. Oyster collectors in Gibraltar did just the same. They made use of their observation that oil prevented ripples formation and the smooth surface allowed steadier and deeper penetration of sunlight for increased visibility under the water.

Seal hunters also benefitted from the smooth sea surface created by oil. In their case it was the common seal that ‘released’ the oil as 18th-century Welsh zoologist Thomas Pennant, shared hunters’ observations:

Seals prey beneath the water, and in case they are devouring any very oily fish, the place is known by a certain smoothness of the waves immediately above.

An image shows three seals lazing on a rocky outcrop
Common seals create an oily patch on the sea surface when they consume their oily fish underwater. Seal-hunters were aware of this phenomenon. From Thomas Pennant, British Zoology Volume I Plate XII (London, 1812:167) 728.f.26.

Pouring oil on the sea was practiced and endorsed even by the British Admiralty (1891) as a way to prevent waves from crashing over the vessel:

Many experiences of late the utility of oil for this purpose is undoubted, and the application is simple. […] A very small quantity of oil, skillfully [sic] applied, may prevent much damage both to ships (especially the smaller classes) and to boats, by modifying the action of breaking seas.

The oil was often applied from an oil bag, ‘usually filled with oakum (teased rope fibres), and/or cotton waste, and fish oil was indeed the preferred (and cheapest) medium used.’ The oil bag was hung over the side of the vessel, immersed in the sea, windward, and pricked with a sail needle to facilitate leakage of the oil. […]’

Sea captain J. W. Martin describes the most recent use of oil bag in ‘launching or recovering ships’ boats, embarking or disembarking a pilot’ and makes the point that carrying an oil bag was compulsory in British ships’ lifeboats’ equipment until 1998.

It was Benjamin Franklin whose experiments provided impetus for exploring the science, the physics, behind the phenomenon: why and how oil prevented waves from breaking. In the spirit of Enlightenment Franklin used an experimental approach to triangulate and scientifically account for practitioners’ observations.

The correspondence of English and Dutch ‘learned gentlemen’ reveals their excitement and commitment for compiling oil stories from as diverse sources as possible – ‘ancient’ (Latin and Greek classics), ‘vulgar’ (lay knowledge), anecdotal, published and experimental – in order to defend the authority of either practitioners’ or natural philosophers’ approach to understanding the oil’s wave stilling effect.

Franklin acknowledges his bias towards ‘modern’ (18th century) ‘learned’ people’s knowledge compared to old and lay sources:

I had, when a youth, read and smiled at Pliny's account of the practice among seamen of his time, to still the waves in a storm by pouring oil into the sea […] [I]t has been of late too much the mode to slight the learning of the antients [sic]. The learned, too, are apt to slight too much the knowledge of the vulgar. This art of smoothing the waves with oil, is an instance of both.

This candid self-reflection is all the more interesting as Franklin and his fellow Enlightenment philosophers benefited from the data, which they snubbed at, for formulating their ideas. By privileging the fast-developing scientific approach, the ‘learned gentlemen’ facilitated the shift of epistemic authorities from traditional knowledge to science and contributed to the politically constructed divide between different ways of knowing.

A drawing shows a nineteenth-century rowing boat approaching an endangered sailing ship in a stormy see
A lifeboat approaching a ship in a stormy sea, from Description of the Royal Cyclorama, or Music Hall: Albany Street, Regent’s Park ... (London, 1849) RB.31.a.23(2)

Within the scientific paradigm, integration of practical and scientific inquiry remained a challenging enterprise with resistance from all involved.

However, a new paradigm seems to be emerging in the context of the unfolding climatic changes. While the authority of knowing still held by science, the relevance of local, traditional and indigenous ways of knowing appears to be slowly acknowledged (again):

Scientific knowledge, Indigenous knowledge, and local knowledge can complement one another by engaging both quantitative data and qualitative information, including people’s observations, responses and values. However, this process of knowledge co-production is complex and IK and LK possess uncertainties of a different nature from those of scientific knowledge, often resulting in the dominance of scientific knowledge over IK and KL in policy, governance, and management. [IPCC 2019:37]

The IPCC special report on ‘The Ocean and Cryosphere in a Changing Climate’ published in September 2019 portrays science and local knowledge (LK) and indigenous knowledge (IK) as complementary, an attitude that pours oil on the troubled waters of the local knowledge - science nexus.

Thanks to Marja Kingma, Curator, Germanic Collections, BL European Studies; Dr. Saqib Baburi, Curator, Persian Manuscripts, BL Asian and African Collections with contributions from Arani Ilankuberan, Curator, South Indian Collections; Phil Hatfield, Head of Eccles Centre, BL Eccles Centre for American Studies and Julian Harrison, Lead Curator, Medieval Historical & Lit., Western Heritage Collection;

References and further reading:

Franklin, B. ‘Of the Stilling of Waves by Means of Oil. Extracted from sundry Letters between Benjamin Franklin, L.L.D. F.R.S. William Brownrigg, M.D. F.R.S. and the Reverend Mr. Farish’. Philosophical Transactions of the Royal Society of London, 1774, 64(0), pp.445–460. Available at: https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1774.0044 [Accessed 3 December 2019].

Gilkes, M. F. ‘A Whatsit’ Mariner’s mirror, 2009. 95(3), pp.336–337. Shelfmark Ac.8109.c.

IPCC, 2019. Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.[H.-O. Portner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer (eds.). In Press. Available at https://www.ipcc.ch/srocc/  [Accessed 3 December 2019] 

IPCC and Allen, M.R., Global Warming of 1.5 oC?: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Technical Summary [in press]. [online] (Geneva, 2019) Available at: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/02/SR15_TS_High_Res.pdf. [Accessed 3 December 2019] 

Martin, J.W.C.F. ‘Oil Bag’. Mariner’s mirror, 2010, 96(1), pp.94–95. Shelfmark Ac.8109.c.

Mertens, J. ‘Oil On Troubled Waters: Benjamin Franklin and the Honor of Dutch Seamen’. Physics Today 59 (2007), 36. (P)PQ00-E(51) <https://physicstoday.scitation.org/doi/10.1063/1.2180175> [Accessed 3 December 2019] 

Pennant, T. British Zoology (London, 1812:167) Shelfmark 728.f.26. Volume I Plate XII

Pliny the Elder, Natural history, with an English translation in ten volumes by H. Rackham, M.A. (London, 1938)?
 Book II, CVI. 233 - CIX 235 page 360 Latin, page 361 English translation Shelfmark 2282.d.150

Plutarch, Moralia in Fifteen Volumes, with an English translation by Lionel Pearson and F. H. Sandbach (London, 1965)?
 Volume XI 854 E - 874 C, 911 C - 919 F Shelfmark 2282.d.96.

Taylor, A. D. and J.J.P Hitchfield, The West Coast of Hindustan Pilot: including the Gulf of Manar, the Maldive and Laccadive Islands (London, 1891) Shelfmark V 8711

Wyckoff, L. A. B. ‘The Use Of Oil In Storms At Sea.’ Proceedings of the American Philosophical Society 23, (1886), 383–388. Available at: https://www.jstor.org/stable/983222  [Accessed 3 December 2019] 

Oil, storms and knowing part 1: Seafarers Calm Waves with Oil

Add comment

This post is to mark the period of the 25th Conference of Parties to the UN Framework Convention on Climate Change, and is contributed by Andrea Deri, Cataloguer.

A storm at sea is one of the most feared experiences, as it often presages shipwreck. Mariners would do anything to survive tempestuous waters, from weather forecasting to casting holy oil or auspicious soil from the tomb of a Persian Sufi saint, Abu Eshaq Kazaruni (d. 1035) on the waves.

Occasionally, sailors wailing from fear were also briefly plunged into the sea: to calm them, not the waves though.

A medieval illumination showing a group of people with varied skin-tones and costumes crammed into a ship. A young boy is being dangled by his arms over the side.
A Persian pageboy is thrown overboard briefly in order to calm his fears from Saʿdī Shīrāzī, Gulistān (CE 1258), part of his collected works or Kullīyāt. IO Islamic 843, Folio 42v

Oil features prominently in K. V. Hariharan’s paper on ‘Sea-dangers in Early Indian Seafaring’, a catalogue of traditional adaptation practices to a range of marine hazards, including cyclones: ‘Seafarers seemed to have known the effect of oil to smoothen the sea surface’. As storms approached seafarers ‘covered their body and garments with oil to smoothen the surface of the water they touched on thus presenting less resistance to the wind and preventing breaking of the waves – the real dangers in wave motion’.

The sewn boats in the archipelago of Lakshadweep, South India, boats fastened with coir, not nails, have also been coated with an oily material for the same reason seafarers covered themselves with oil: making the vessels waterproof and smoothing the water around them.

In addition to coating, seafarers also poured oil directly onto the sea to prevent the waves from breaking on their vessel. Throwing oil on the waves was applied so widely that it became in idiom in Dutch (‘olie op de golven gooien’) and English (‘pouring oil on troubled waters’) with the meaning of settling a disagreement and ‘bringing about a state of calm after great anger or excitement, etc., by tact and diplomacy.’

‘Oily seas’ that appear during the stormy southwest monsoon (June-September) along the Kerala coast, however, are not caused by mariners but natural processes. According to B. Arunachalam, an authority of Indian marine navigation:

[…] such a sea-surface – the kedu neer – is believed by seamen to generate a relatively smooth surface, ideal for anchoring or drifting during foul weather in rough seas. The mudbanks of Cochin, for this reason, are treated as safe anchorages during active monsoon times. 

Kedu neer  (Tamil  கெடு நீர் ) literally means ‘bad water’. It refers to a turbid and calm marine area with almost no waves. A recent scientific study suggests the calmness of the ‘oily sea’ is linked to the wave damping effect of fine suspended matter, not oil. Mariners may have called these patches ‘oily seas’ as the water over the mud banks near Cochin, Kerala, known to generations of fishers, behave similarly to waters that have no waves because they were covered by a thin oil patch.

A close-up of a wooden boat on water, with an area of calm water immediately around it contracting with the rippling water further away
Traditional sewn fishing boat, small odam, in Agatti, Lakshadweep, India, coated with an oily substance. Photo by Andrea Deri, 23 February 2007

 

A simplified image of the coastlines around the Indian Ocean. The site of Cochin is highlighted.
Map of the Indian Ocean in B. Arunachalam, Heritage of Indian Sea Navigation. (Mumbai, 2002:9) YA.2003.a.26499. Cochin, where the oily seas of the mud banks provide safe anchoring during the monsoon season, is marked in South India.

 

A hand=drawn chart of a coastline and island
Traditional Kutchi sea chart, with east at the top, features the Malabar coast, shown as seen from the sea, with coconut palms in B. Arunachalam, Heritage of Indian Sea Navigation. (Mumbai, 2002:28) YA.2003.a.26499. The Cochin port (Kochi Bandar) played an important role in local and regional trade. South Indian ports are considered to be some of the oldest maritime centres.

 

It was not only in the tropical seas where mariners made use of the oil’s water calming properties. Bede, the Anglo-Saxon scholar and monk, tells us ‘How Bishop Aidan foretold to certain seamen a storm that would happen, and gave them some holy oil to lay it’ [642-645 AD] off the Kentish coast in cold North Sea, recorded in the Historia Ecclesiastica Gentis Anglorum, in the British Library at Add MS 1450.

Bede lists his sources including Utta, the priest who received the oil from Aidan, in order to add credibility to Aidan’s sea calming, revered as miracle. The credit, however, perhaps should go beyond Aiden, to local mariners anonymous to chroniclers.

As Aidan served on two islands, Iona and Lindisfarne, he spent considerable time in boats where he may have experienced and learned the practice of pouring oil on waves from local fishers and seal hunters who ferried him. Could Aiden’s holy oil be the same kind of oil local mariners used to quell waves? If so, this is an example of how local knowledge or rather adaptation practice to extreme weather became canonised.

A stylised medieval image showing three robed men in a sailing boat.
St Cuthbert (c 634-687) in a boat at sea, with two other men, from Chapter 11 of Bede's prose Life of St Cuthbert. Yates Thompson 26 f. 26 Cuthbert became a monk after his vision of St Aidan who died in 651

 

Nautical idioms preserve seafarers’ practices. Most of us, landlubbers, need to take a historical perspective to unpack and appreciate their meaning, and we may still ponder over their relevance today. Faced with the unfolding changes of our climate, a major concern of our time, seafarers may serve a great source of inspiration by the way they kept their knowledge alive with keen observation, tireless experimentation and sharing.

If you have an "oil on water" story, you can tell us here.

References and further reading

Arunachalam, B. Heritage of Indian Sea Navigation (Mumbai, 2002)  Shelfmark YA.2003.a.26499

Bede, The Ecclesiastical History of the English Nation (London, 1954). Book III, Chapter XV. Shelfmark 4824.m.1

Bede, Historia Ecclesiastica Gentis Anglorum; Plympton annals for the years 1066-1177, Shelfmark Add MS 1450

Hariharan, K. V. ‘Sea-Dangers in Early Indian Seafaring’. Journal of Indian History, 1956. 34 (Part III (Serial No 102)), pp.313–320. Shelfmark Ac.1928/2

Jeans, P.D. Ship To Shore: A Dictionary of Everyday Words and Phrases Derived from the Sea (Santa Barbara, 1993) Shelfmark YC.1996.b.3808

Jyothibabu., R. Balachandran, K.K., Jagadeesan, L., Karnan, C., Arunpandi, N., Naqvi, S.W.A., Pandiyarajan, R.S., 2018. ‘Mud Banks along the southwest coast of India are not too muddy for plankton’. Nature Sci. Rep. 8, 2544. Available online at https://www.nature.com/articles/s41598-018-20667-9 [Accessed 3 December 2019].

OED, pour oil on troubled waters. [online] Oxford Dictionaries | English. 2019. Available online at: https://en.oxforddictionaries.com/definition/pour_oil_on_troubled_waters [Accessed 3 December 2019].

M. b. Otman, ‘Ferdaws al-moršediya fi asrar al-samadiya’. In: F. Meier and I.A. Afšar, eds., Die Vita des Abu Ishaq al-Kazaruni in der Persischen Bearbeitung von. (Istanbul, 1943) Shelfmark Per.D.537

Sa'di Shirazi, Gulistan (CE 1258), part of his collected works or Kulliyat. Shelfmark IO Islamic 843, Folio 42v

Subramanian, P.R. Kriyavin tarkalat Tamil akarati: Tamil-Tamil-Ankilam (Madras, 2000)

Simpson, J. A. and E. S. C. Weiner eds., Oxford English Dictionary (Oxford, 1989:749) Shelfmark OIA 423

Varadarajan, L. Sewn Boats of Lakshadweep. National Institute of ([Dona Paula], 1998). Shelfmark YP.2019.b.606

Wright, J.R. A companion to Bede: a reader’s commentary on ‘The ecclesiastical history of the English people’. (Grand Rapids, 2008) Shelfmark YC.2009.a.15214.

15 October 2019

New Scientist Live 2019

Add comment

New Scientist Live 2019 logo
On Friday 11th October, I went to the New Scientist Live show, which is an annual event for the general public about the wonders of science. There are a series of lecture slots, and an exhibition from universities, learned societies, technology companies, commercial and charitable science "experience" organisation, and makers of science-related ornaments and clothing.

The talks I attended were all very interesting. Tom Crawford of Tom Rocks Maths described his work modelling the flows of rivers into oceans as a means of tracking plastics and other forms of pollution, to find the best places to collect them. The flows are controlled primarily by the Earth's rotation, outflow speed, and the density of the river water relevant to the sea.


Sim Singhrao of the University of Central Lancashire described her work on the possible contribution of poor oral hygiene to Alzheimer's disease. The bacterium Porphyromonas gingivalis, which contribures to gum disease, has been found in the brain of Alzheimer's patients, and it is suggested that Alzheimer's disease may be worsened by the action of the immune system in the brain, or protein fragments left behind when the bacteria feed.


Jess Wade of Imperial College, who works on organic semiconducting materials which can be used in products such as flexible displays, gave a lecture on chirality in science, from Louis Pasteur's discovery of optical isomerism in tartaric acid to biological effects, to the possible origins of chirality in polarisation of starlight due to the rotation of galaxies, to chiral selection of electron spin and the role it may play in our nervous system.


Guillermo Rein of Imperial College described the wide range of work involved in fire science, from fires aboard NASA spacecraft, to how polymers burn, to how large buildings can survive fire without structural failure, to the problem of long-lasting peat fires and the severe air pollution that they cause in South-East Asia. His work has not just been theoretical, but has included spectacularly large experiments in both the Czech Republic and Indonesia.


Finally, Ravi Gogna of BAE described work to improve information sharing between police, social workers, health care, and schools to improve child protection and allow problems to be dealth with without heavy-handed interventions. The technology was originally used to raise flags for fraud in financial institutions.

23 January 2019

Lab notebooks - handwriting at the core of science

Add comment

McLaren notebook
Page from Anne McLaren's notebook (shelfmark Add MS 83844) covering embryo transfer experiments in mice, 1950s. (Copyright estate of Anne McLaren)


Today is World Handwriting Day, and we thought we’d pay our respects to the most important role handwriting plays in science, one which you might not have heard of if you aren’t a practicing scientist. This is the “lab notebook”, a scientist’s daily diary of all their experiments, thoughts, and other scientific activities. Until relatively recently, these were always handwritten, as they were meant to record what, in detail, someone was doing as they did it. Waiting to create them until work was finished caused too much risk of forgetting or distorting something.


Lab notebooks grew out of the personal diaries and notebooks of individual researchers. Some notebooks by well-known scientists have become Library treasures in their own right. One of the most famous works in our Treasures of the British Library exhibition is the Codex Arundel, a collection of notes written by Leonardo da Vinci (although probably not in the order they were bound) in the sixteenth century. At the other extreme of history, the Treasures Gallery currently displays the biologist Anne McLaren's lab book on embryo transfer in mice. Outside the BL, most of the lifelong field and theoretical notebook collections of Charles Darwin are digitised and available online, as are some of Albert Einstein's most significant theoretical notebooks. At the other end of accessibility, some of the lab notebooks of Marie and Pierre Curie, held by the National Library of France, are reported to still be so radioactive that they are not safe to handle without protective clothing.


Laboratory notebooks later became an even more important record of exactly what was done, as lone researchers were replaced by academic and private-sector research groups, science and technology became ever-more important to society, and scientists were expected to describe their methods in detail so that they could be replicated and turned into innovative technologies, materials and treatments. Additionally, until quite recently, American patent law worked on a “first to invent” basis whereby the person who could prove that they had the idea for an invention first, or their employer, had the right to a patent. Laboratory notebooks were the main source of evidence for this. In recent years, scientific misconduct has become a higher-profile issue, as scientists worry about a “replicability crisis” where too many uncertain or exaggerated results have been published. Lab books help prove that the work was done as the researchers claim, or the detail expected in them make discrepancies easier to recognise. And the notebooks of eminent scientists are a rich source for scientific historians.


By the latter part of the twentieth century, some organisations had very detailed instructions for how laboratory notebooks should be completed and stored. Lab books had to be written exactly as the work was carried out, or as soon as possible – no jotting notes on scraps of paper and writing them up at the end of the day. Notebooks were considered the property of the employer or the university, and could not be removed from the lab. And they had to be clearly paginated with no chance of pages being removed or replaced.


Many laboratories still use paper notebooks, due to the ease of simply writing notes down as you go. In many types of science, electronic devices are at risk of being exposed to spillages or damaging electromagnetic conditions, or are simply unwieldy. Some researchers also like to keep their detailed records to themselves instead of sharing them with a group. Some research groups and organisations are now moving to electronic recording, but the lifetime of electronic data can be questionable due to failure to back up and the lifespan of media. Specifically-designed electronic laboratory data systems are more secure. They are more common in industry than academia, as academics are more independent and less likely to respond to top-down orders, and academic institutions can be less able to afford the necessary software and hardware. The advantages of electronic research notes systems are that you can save large amounts of original data directly into the system without retyping or printing it, clone records from earlier experiments to save time, search your records more easily, share data within the group easily, and track the history of records. Now data is often electronically recorded and can be directly copied into a laboratory system without a transcription stage. It is possible to use general project and collaboration software packages such as Evernote, SharePoint, or GoogleDrive but specifically-designed software is now available. 


In 2011, Gregory Lang and David Botstein published a scanned copy of the entire lab notebook covering the research leading to a paper on yeast genetics, as an attachment to their e-journal article.


Modern lab books rarely find their way into the British Library collection, but our most famous example is the collection of Alexander Fleming, the discoverer of penicillin (also including records of earlier experiments by his mentor Sir Almroth Wright). As well as the material by Anne McLaren mentioned earlier, we also have some material from the photography pioneer Henry Fox Talbot, electrical inventor David Edward Hughes, and biologist Marilyn Monk.

Sources and further reading:
Barker, K, At the bench: a laboratory navigator, Cold Spring Harbor: Cold Spring Harbor Press, 2005. pp. 89-99. Shelfmark YK.2005.b.1888
Baykoucheva, S. Managing scientific information and research data, Oxford: Chandos Publishing, 2015. Available electronically in British Library reading rooms.
Bird, CL, Willoughby, C and Frey JG, "Laboratory notebooks in the digital era: the role of ELNs in record keeping for chemistry and other sciences", Chemical Society reviews, 2013, 42(20), pp. 8157-8175. Shelfmark (P) JB 00-E(105) or 3151.550000.
Elliott, CA, "Experimental data as a source for the history of science", The American archivist, 1974, 37(1), pp. 27-35. Shelfmark Ac. 1668 or 0810.390000, also available electronically in British Library reading rooms.
Holmes, FL, "Laboratory notebooks: can the daily record illuminate the broader picture", Proceedings of the American Philosophical Society, 1990, 134(4), pp.349-366. Shelfmark Ac. 1830 or 6630.500000, also available electronically in British Library reading rooms.
Stanley, JT and Lewandowski, HJ, "Lab notebooks as scientific communication: investigating development from undergraduate courses to graduate research", Physical review: physics education research, 2016, 12, 020129, freely available online at https://journals.aps.org/prper/pdf/10.1103/PhysRevPhysEducRes.12.020129.
Williams, M, Bozyczko-Coyne, D, Dorsey, B and Larsen, S, "Appendix 2: Laboratory notebooks and data storage", in Gallager, SR and Wiley, EA, Eds. Current protocols essential laboratory techniques, Hoboken: John Wiley & Sons, 2008. Shelfmark YK.2008.b.6299 or m09/.30081

12 November 2018

New psychology and nature databases on trial at the BL

Add comment

Starting today, users in the British Library Reading Rooms can use two new databases from Alexander Street, which are on trial until mid-January 2019. The usage figures in the next two months will determine whether we take the databases permanently.

An advertisement for "Psychological Experiments Online" shows a group of people in white coats standing with their faces to a wall and their hands over their head, overseen by a man wearing sunglasses and militaristic uniform, and armed with a stick.
Psychological Experiments Online has information on some of the most famous (or notorious, given the dark conclusions of some of them) experiments in psychology since 1900, with articles, archive material, sound or video interviews with researchers and participants, and even recordings of the experiments themselves when available.

An advertisement for the "BBC Landmark Video Collection" shows a collage of images of animals and plants.
The BBC Landmark Video Collection has complete episodes of some of the BBC's most significant nature documentary series from the last fifteen years. All of them have full subtitles and searchable transcripts.

Note that to use these databases you will have to use our desk PCs within the Reading Rooms. For the full effect of sound and video material, you will need to use a PC with headphones, although most of those in the Science reading rooms are now fitted with them.

Please can you give any feedback to the enquiry desk staff, or to science@bl.uk

Posted by Philip Eagle, Subject Librarian - STM

13 January 2017

Making hydrogen from wax

Add comment

Philip recently attended an event for other Oxford University chemistry alumni, and one of the speakers drew attention to a recent publication from, among others, Oxford chemists, regarding the production of hydrogen from paraffin waxes by microwave degradation using a ruthenium catalyst.

Hydrogen has often been suggested as an environmentally-friendly replacement energy source for fossil fuels in transport vehicles and other applications requiring high energy density. (Note that hydrogen is not a “fuel”, as it must be made using energy from other sources, which can be environmentally-friendly or not.) However, there are significant problems with this, notably involving the safe storage of a highly-inflammable and explosive gas which is much lighter than air.

Hydrogen wax cycle
Figure 5 from original article showing chemical cycle and outputs

This publication suggests that wax could be carried on vehicles and used to create hydrogen gas in situ, the waste carbon being used to make more wax via syngas production and the Fischer-Tropsch process, where carbon monoxide and hydrogen is converted into hydrocarbons as a potential source of petro-chemicals that does not involve releasing fossil carbon into the atmosphere. While this publication is still a long way from a working industrial-scale process, it offers a very hopeful potential avenue for less-polluting technology.

Source: Gonzalez-Cortes, S et al. Wax: A benign hydrogen-storage material that rapidly releases H2-rich gases through microwave-assisted catalytic decomposition, Scientific Reports, 2016 6, 35315. Available online at http://www.nature.com/articles/srep35315

Further reading:
Ball, M et al (Eds.). Compendium of hydrogen energy: volume 4, Hydrogen use, safety and the hydrogen economy, Oxford: Woodhead Publishing, 2015. Available online in the British Library Reading Rooms.

09 February 2016

PhD placement in Science in Society at the British Library

Add comment Comments (0)

Applications now open

The British Library is currently running a series of 3-month (or PT equivalent) PhD Placements, to be hosted by specialist curatorial teams and other Library experts.  Of the 17 placements on offer, this opportunity will be of particular interest to PhD students with interests in science, science policy and the social perception of scientific issues.

Science in Society

Working within the Research Engagement Team, the placement student will have the opportunity to organise and deliver a TalkScience event on a topic relevant to scientific policy.  TalkScience is well-established, highly successful series of public debates organised by and held at the British Library. Previous topics have ranged from the use of personalised genomics to science education in schools.

TalkScience_23_6_15-45
A previous TalkScience event

The placement student will also have the opportunity to use the Library’s collections in relation to science and its social perceptions, for example by working with the Web Archive Team to produce a special online collection related to science and science policy.  Additionally, placement students can also get involved with a number of activities across the Research Engagement Team, such as contributing to research reports or social media activity. 

We have hosted Science in Society interns in previous years. You can read more about their projects here:

Stuart smith talkscienceStuart Smith (BBSRC intern, 2012)

Adam levyAdam Levy (NERC intern, 2014)

Rachel huddartRachel Huddart (BBSRC intern, 2014)

Further information

The application deadline for all of the PhD placements is Friday 19 February 2016.

Further information, including eligibility criteria and details on the application process, can be found here:

http://www.bl.uk/aboutus/highered/phd-placement-scheme 

All applications must be supported by the applicant’s PhD supervisor and their department’s Graduate Tutor (or equivalent). Please forward any questions to: Research.Development@bl.uk

 

Eleanor Sherwood

Research Engagement PhD Placement Student

10 December 2015

GM Crops: what are the risks?

Add comment Comments (0)

Last month we took our successful TalkScience series on the road to Leeds Central Library. Here Ruth Amey  (PhD student at the University of Leeds) shares some of the highlights of the event.

The GM crop era may seem like a golden age of technofixes, but in a recent ‘TalkScience’ discussion in Leeds the panel explored some of the less obvious risks associated with this technology. It is commonly stated that GM crops can ‘help feed the world’, but the speakers challenged this idea and considered issues of control, ecological harm and the unknown dangers from altering genetic code.

This is the first TalkScience event to be held outside of the British Library’s London’s site, organised by the West Yorkshire branch of the British Science Association in collaboration with the national British Science Association, British Library and Leeds Central Library.

TalkScienceLeeds
Panellists (left to right): Professor Jurgen Denecke, Andy Goldring, Liz O’Neill and chair Dr. Alice Owen listen to the final speech from Martin Coates. Photo credit: Jing An

What are GM Crops?

Genetically Modified (GM) crops are plants which are grown for food and have had their genetic code altered. This is often done to introduce a trait to a crop that does not occur naturally, by modifying DNA. For example, rice could be cultivated to produce vitamin A, or crops are altered to produce a small amount of toxin that is harmful to the insects that would eat them.

Can GM Crops really feed the population?

It is a phrase commonly heard that GM crops will ‘feed the world’, and yet Professor Jurgen Denecke from Leeds University pointed out that we already grow enough food to feed more than the population. The problem is not in the amount produced, Jurgen argued, but instead the issue is in limited energy for transportation and Liz O’Neill, director of GM Freeze, argued that starvation is a socioeconomic problem – ‘people starve because they are poor’. GM crops aren’t a quick-fix for world hunger. The problem is in politics and not production.

 The issue of control

‘No-one should own genetic code’ posed Liz O’Neill. If a company can patent a crop, then they can charge royalties and control who can buy that crop. Andy Goldring, CEO of the Permaculture Association network, invited us to imagine a future in which a handful of companies control the world’s food supply, and require you to buy only their crops, and puts people in jail for using traditional crops. ‘This is almost like a James Bond film!’ jested Andy – but with GM Crops could this be the future? GM crops gives the potential for companies to have complete control of a seed, and consequently complete control of our food. Martin Coates, Managing Director of Agrantec, explained how complex the food chain is and without transparency GM crops are potentially an opportunity for companies to exploit this complexity - ‘Anyone working with genetic modification needs to recognise that GM Crops are not just about science, but also about political and corporate power’.

Ecological harm

Andy Goldring particularly highlighted the ecological problems. Certain GM Crops can produce toxins harmful to non-target insects, such as butterflies. Planting different crops also affects crop rotations and affects biodiversity, which are particular issues to Permaculture’s aim to create a sustainable society from ‘permanent agriculture’.

Fear of the unknown

We can’t predict the long-term effects of GM crops. Ecosystems are complicated, crops are hard to contain and cross-contamination can occur.  ‘DNA is not lego!’ proclaimed Liz O’Neill – altering genetic code is complicated, there’s a lot that can go wrong.

Take-home messages

The closing remarks all followed a broadly similar theme. Jurgen Denecke maintained that every method that increases knowledge is a good thing and Martin Coates suggested we should be supportive of research that makes us understand GM crops better. Andy Goldring too urged us to keep an open mind about science, all of which answered a question from the floor about our society’s responsibility to pursue the potential of GM Crops. But ultimately the panel agreed with Liz O’Neill’s caution to separate the scientific potential of GM crops to how GM crops are being produced now. Andy Goldring stressed that we should follow the money and make sure crops aren’t about making shareholders wealthier. Ultimately, it seems there is a political issue behind GM crops that perhaps, currently, is bigger than the science.

We invited the audience to share with us their views on GM Crops before and after the debate; the audience overwhelmingly voted with a positive opinion of GM Crops.

TalkScienceLeeds(2)
Photo credit: Anna Woolman


The panel included:

  • Liz O'Neill from GM Freeze, the UK umbrella campaign for a moratorium on GM in food and farming.
  • Professor Jurgen Denecke from Leeds University - Professor for Plant Cell Biology and Biotechnology, Faculty of Biological Sciences
  • Andy Goldring from Permaculture, the national charity that supports people to learn about and use permaculture – ‘Permanent Agriculture’
  • Martin Coates from Agrantec - an all-in-one cloud based data management system to meet the needs of the food industry.

Chair:

  • Alice Owen from Leeds University – Lecturer in Business Sustainability & Stakeholder Engagement in Sustainability Research Institute, School of Earth and Environment

09 November 2015

Science in Schools: What are the options?

Add comment Comments (0)

Here we share some of the highlights from our most recent TalkScience event.

The topic under discussion at the 30th TalkScience event was the future of secondary science education. We welcomed  Ed Dorrell (Times Educational Supplement) to chair a panel of expert speakers including Professor Louise Archer (Kings College London), Peter Finegold (Institution of Mechanical Engineers), and David Perks (East London Science School).

The panel gave a wide-ranging introduction referring to the skills shortage and the economy, science in society, and social justice. These broad issues framed the discussion of more specific points about the nature of the science curriculum (baccalaureate or ‘traditional’ academic science education), CPD for science teachers and the concept of ‘science capital’. The introduction was followed by a lively discussion between the audience and the panel.

Take a look at the highlights video here:

 

You might also be interested in this blog post where you can find out more about the range of resources relating to science education that are on offer at the British Library.

And if you missed out on this event - fear not! There is still one more TalkScience event at the British Library this year - the Christmas Quiz! Tickets are available via the British Library box office and cost £10 per team (up to 5 people).

Katie Howe

04 October 2015

From fiction to fact: the science of Animal Tales

Add comment Comments (1)

Alice Kirke investigates the facts behind the fiction of the British Library’s Animal Tales exhibition.

The Animal Tales exhibition at the British Library explores what our portrayal of animals within literature tells us about ourselves. The natural environment and its inhabitants have inspired generations of writers, but how do some of our favourite, anthropomorphised fictional creatures compare to their real-life counterparts? I set out to discover what the science says about the creatures lurking among the pages.

Cats: aloof and independent?

Valued for their companionship, skill in hunting vermin, and role in numerous ‘funny cat videos’ on YouTube, the domestic cat was first classified as ‘Felis catus’ by the Swedish botanist and zoologist Carolus Linnaeus in 1758. The exhibition features French philosopher Michel de Montaigne’s Essays,[1] in which he famously asked ‘When I am playing with my cat, how do I know she is not playing with me?’ People have kept cats as pets for thousands of years. Though they are commonly thought to have first been domesticated by the Ancient Egyptians, who considered them to be sacred, there is evidence of earlier domestication dating from around 9,500 years ago.[2] There are many theories and misconceptions about the behaviour of these enigmatic pets. As predators, cats are very focussed on their environment leading to the common misreading of their behaviour as aloof, and although they are seen as ‘independent’ they are in fact social animals. Cat communication includes a variety of vocalizations as well types of cat-specific body language.[3]

 

Snakes: slithering and sinister?

Lamia
A 17th century depiction of Lamia from Edward Topsell's The History of Four-Footed Beasts L.R.301.cc.3.

Snakes have a sinister reputation in literature and culture. In ancient Greek mythology Lamia, the mistress of Zeus was transformed into a terrifying serpentine demon by Zeus’ jealous wife Hera. In Keats’ poem Lamia[4], displayed in the exhibition, the protagonist appears in her beautiful human form before being transformed back into a serpent at her wedding feast. To an extent, this was a comment on science itself; knowledge of the natural world destroyed its beauty.

 

 

 Snakes are perhaps so often portrayed as evil in literature because some species are dangerous to humans, but snakes are diverse creatures- there are over 3,000 species of snake in the world, with at least one type of snake on every continent except Antarctica. There is debate among evolutionary psychologists over whether the fear of snakes is innate. Since those with a phobia of snakes would be more likely to stay away from them and avoid the dangers of being bitten, they had a better chance of surviving and passing on their genes. Recent research suggests that although the fear of snakes is a learned behaviour, people do have a knack for spotting them; when shown images of snakes surrounded by objects of a similar colour babies and young children detected snakes faster than other objects.  

Spiders: creepy crawlies?

Frequent scare stories in the UK press about invasions of deadly spiders prey on a common fear of arachnids. There are over 40,000 different species worldwide, and although the vast majority are venomous most are not dangerous to humans. Arachnologists, experts who study spiders emphasise their diversity in terms of their appearance, habitats and behaviour.

Due to their wide range of behaviours, they have become symbolic of various attributes, including patience, cruelty and creativity in art and mythology.  The character of Anansi, a spider who often acts and appears as a man in West African and Caribbean folklore, has taken on a variety of different traits over time. Anansi Company,[5] featured in the exhibition, is a modern version of tales about Anansi and his friends which are central to Caribbean culture.

Crow: cruel or cunning?

Crow
The Crow and the Pitcher, illustrated by Milo Winter in 1919

In common English, corvids including crows, ravens, rooks, jackdaws, jays and magpies, are all known as ‘the crow family’.  Ted Hughes’ Crow draws on mythology surrounding the much maligned creature, which is often connected with death.[6] In Irish mythology, crows are associated with Morrigan, the goddess of war and death, and the collective name for a group of crows is a ‘murder’. However, they have also been linked with prophesy, cunning and intelligence. In one of Aesop’s fables, a thirsty crow spied a pitcher containing a small amount of water, which was out of reach of its bill. The crow began dropping pebbles into the pitcher one by one, thereby raising the level of water and enabling it to drink. A 2009 study published in Current Biology which replicated Aesop's fable, found that four captive rooks used stones to raise the level of water in a container, allowing a floating worm to move into reach, showing that the goal-directed behaviour of Aseop’s crow is reflected in actual corvid behaviour. European magpies have demonstrated self-awareness in mirror tests, and crows and rooks have been shown to have the ability to make and use tools, previously regarded as a skill specific to humans and a few other higher mammals. This scientific research suggests that crows are one of the most intelligent animals in the world.

Animal Tales showcases many more familiar yet enigmatic creatures. The wealth of material in the Library collections can be used to trace animals in literature as well as the latest scientific research about their characteristics- come and see the exhibition and follow up with some research into your favourite fictional beasts!



[1] Michel de Montaigne, Les Essais de Michel Seigneur de Montaigne. (Paris, 1602) C.28.g.7

[2] Vigne JD, Guilaine J, Debue K, Haye L, Gérard P (April 2004). "Early taming of the cat in Cyprus". Science 304 (5668): 259

[3] Dennis C. Turner, and Patrick Bateson, The domestic cat: the biology of its behaviour. (Cambridge : Cambridge University Press, 2000) m00/46105

[4] John Keats, Lamia, Isabella, the Eve of St. Agnes & other poems. (Waltham St. Lawrence, 1928) C.98.gg.16

[5] Ronald King & Roy Fisher, Anansi Company. (London, 1992) C.193.c.8

[6] Ted Hughes & Leonard Baskin, Crow: from the life and songs of the Crow (London, 1973)