Science blog

Discover Science at the British Library

Introduction

We are the British Library Science Team; we provide access to world-leading scientific information resources, manage UK DataCite and run science events and exhibitions. This blog highlights a variety of the activities we are involved with. Follow us on Twitter: @ScienceBL. Read more

16 March 2020

Caroline Herschel born 270 years ago today.

A close-up image of a handwritten manuscript on paper
The first page of the letter from Caroline Herschel on display in the Treasures Gallery

Happy birthday Caroline Herschel!


Today is the 270th anniversary of the birth of the German-born British astronomer Caroline Herschel, who discovered eight comets and fourteen nebulae. She also produced an expansion and correction of the previous main British star catalogue, created in the late seventeenth and early eighteenth century by John Flamsteed, and made substantial contributions to the catalogue of nebulae and star clusters published after her death by her nephew John F W Herschel. She made heavy contributions as well to the work of her elder brother William Herschel, famous as the discoverer of Uranus.


Caroline Hershel was born in 1750 in Hannover in Germany, the daughter of a military musician. As the youngest daughter of her family, it was assumed by convention at the time that she would devote her life to helping her mother maintain the home and look after her father and elder brothers, which she resented. Her escape from this came when her brother William invited her to move to England and join him in Bath, where he was working in the family tradition as a musician. Caroline became a promising singer, but when her brother shifted his interests from music to astronomy he assumed once again that she would naturally help him in his own career. Over the years, despite this unwilling beginning, she became genuinely enthusiastic for the subject. In 1782, William was appointed Royal Astronomer by George III (not to be confused with the older position of the Astronomer Royal at Greenwich) and the pair moved to Datchet near Slough, to be closer to the royal home at Windsor. In 1787, William pursuaded the King to pay Caroline a salary in her own right, making her the first woman in Britain to be employed as a scientist.


The work was not just intellectual but physically demanding. William and Caroline had to construct their own telescopes and spend hours in the open air at night making observations. William's telescopes were some of the largest in the world at the time, being from twenty to forty feet in length. On one occasion, Caroline fell and impaled her leg on part of a telescope, losing a two ounce lump of flesh and suffering an injury which a military surgeon later told her would have entitled a soldier to six weeks spent in an infirmary.


Caroline's contributions have traditionally been undervalued due to a mixture of her personal shyness (coupled with disdain for people who she considered intellectually inferior) and her willingness to publicly depict herself as merely a submissive helpmeet to her brother, to avoid controversy, which were played up by subsequent commentators who wanted to depict her as conventionally feminine. Letters to her family which we hold here at the BL reveal her as a rather more strong-willed person, with a sardonic sense of humour.


After William's death in 1822, Caroline moved back to Hannover, where the position of her home in the centre of the city prevented her from much astronomical observation. In response, she devoted herself to compiling the catalogue of nebulae and star clusters. She died in 1848, increasingly physically frail in her later years but mentally sharp until the end.
We hold three copies of the first edition of Caroline Herschel's catalogue of stars, at the shelfmarks L.R.301.bb.2, 59.f.4, and B.265. The copy at L.R.301.bb.2 bears the bookplate of Charles Frederick Barnwell, at one time assistant keeper of antiquities at the British Museum, and is bound with a copy of the star catalogue of Francis Wollaston, another astronomer of the same era.


The letter from Caroline Herschel currently displayed in the Treasures Gallery is taken from the section of the Charles Babbage papers dealing with astronomy, Add MS 37203. It is a copy of a letter originally sent to Nevil Maskelyne, the Astronomer Royal of the era, who was one of the few friends who Caroline was comfortable enough with to make an extended visit to. Her letters to close relatives while living in Hannover, which show a more outspoken side to her, are found at Egerton MS 3761 and Egerton MS 3762. The "Egerton" refers to the fact that they were purchased by the British Museum Library with money from an endowment created specifically to acquire manuscripts in the bequest of Francis Henry Egerton, 8th Earl of Bridgewater.


Further reading:
Brock, C. The comet sweeper. Thriplow: Icon, 2007. Shelfmark YC.2008.a.3165, also available as e-book in the British Library Reading Rooms.
Hoskin, M. Herschel, Caroline Lucretia (1750-1848). In Oxford Dictionary of National Biography, 2005. https://doi.org/10.1093/ref:odnb/13100. Available online in British Library Reading Rooms.
Winterburn, E. The quiet revolution of Caroline Herschel. Stroud: The History Press, 2017. Shelfmark YK.2018.a.6511, also available as e-book in the British Library Reading Room

13 March 2020

London Fashion Week & Technology: future of catwalks

Fashion is not necessarily the first subject that comes to mind when considering the disciplines that fall under the STEM umbrella.  Nevertheless this is rapidly changing has London Fashion Week demonstrated the potentialities of collaboration within these areas.

The fashion event takes place twice a year in February and September, showcasing over 250 of the most prestigious and emerging designers’ new trends to a global audience. Generating an estimated income of over £100m; fashion is big business. London Fashion Week has increasingly utilised new technologies in its catwalk shows, textiles and designs and this year staged whole shows dedicated to wearable tech. In particular this year’s event in February displayed an ever growing connection between fashion and new technologies hailing in the future of catwalks.

Part of LFW was DiscoveryLAB. This was an experiential section of the exhibitions that highlighted the intersection of technology, art and fashion. Technology was specifically of significance this year amid the coronavirus outbreak that is particularly affecting Chinese consumers, who make up an important demographic of the event. Catwalks were first streamed live almost ten years ago, but this year the virtual coverage of shows enabled wider coverage for those significant buyers that could not attend.  

Some technological highlights included:

5G

 Central St Martins MA fashion show joined up with the company Three to use 5G- cutting edge technology to create an immersive multisensory show combining visual, sensory and sound effects. The catwalk was empty while technology allowed the model Adwoa Aboah to be displayed as a 3D high definition, virtual version of herself. This transformed a catwalk show into a digital experience for the audience and the model alike, who was actually present on the front row watching herself. This use of 5G would enable models to feature on the catwalk for numerous shows simultaneously which could be viewed globally.

Three5G catwalk phone
Image curtesy of Three

3D

3D printing allows designers to produce complex patterns while also maximising the production process. Designers including Stella McCartney, Jourdan Dunn, Annie Foo and Iris Van Herpen have all employed the technique to create stunning pieces. Herpen combined 3D printing with laser cutting to create dresses that flowed like sea creatures for her collection Sensory Seas that premiered at Paris Couture week 2020.  Annie Foo worked in collaboration with Europac 3D to print shoes.

AI & AR

AI is used to help develop more sustainable fashions, as it can be used to cut down on waste of fabric, water and ink at the production stage and utilise more biodegradable materials that can also be recycled.  During one catwalk show augmented reality used perceptual information generated by multiple sensory modalities. This enhanced objects on display allowing the virtual and real world to be experienced interactively in real time.

 In conjunction with 5G this technology is used to produce virtual reality clothes.  Maya Jama’s first AR dress which was fitted with sensors that were tracked by Samsung Galaxy Fold 5G network to transform the dress. A similar process is starting to be used to allow online shoppers to try on items before they buy, which is an important development to fill the gap between online and shopping in real time.  AR apps are being developed enabling users to dress avatars akin to a futuristic version of paper dolls. Users can see a simulated view of what items would look like before they buy.  As traditional high street shopping is in decline, many companies and designers are now integrating the use of apps in their business models.  As more purchasing moves to online platforms such apps can only grow in popularity.  The virtual fitting room will become the norm for a tech savvy generation of fashionistas.

Milan fashion week saw the British tech company Chaos collaborate with Fendi to produce a collection of tech enhanced jewellery, including smartphone pouches, earrings that functioned as touch screen pens and AirPods Pro case.

In other progressions, NASA technology is being used to take Aerogel, the material used to insulate space shuttles, to create SOLARCORE, a wearable insulator that could be used in winter garments.

This year’s London Fashion Week demonstrated how the application of technologies has the potential to transform the way the fashion industry creates and displays fashion to buyers who don’t even have to be present. This is all indicating that fashion & science are rapidly becoming more related disciplines and perhaps we may start to see more fashion students using the science readings rooms in the future…

09 March 2020

Donald Michie (1923-2007): ‘Duckmouse’, a modern-day polymath

This post is part of a series highlighting some of the British Library’s science collections as part of British Science Week 2020.

Codebreaker? Geneticist? Computer scientist? There is no single label which best encapsulates the wide reach of Donald Michie’s career as a scientist. In nearly 70 years of research, Michie crossed paths with some of the most well-known scientific names of the twentieth century, such as Alan Turing and Trofim Lysenko, and was at the forefront of two contrasting fields of scientific research.

Michie was born to a middle-class family in Rangoon, Burma (now Yangon, Myanmar) in 1923, son of a British Empire banker. As was typical for young British boys of the Empire, he was sent back to Britain to boarding school for his education, attending Rugby School.

As a young man, fresh out of school and armed with a scholarship to study classics at Balliol College, Oxford, Michie accidentally found himself on a codebreaking course at Bletchley Park in 1942, in the middle of World War II. Intending to attend a Japanese language course, he had inadvertently turned up six months early, but was pointed to a codebreaking course, which he excelled at, returning after hours to revise and practice. Upon completing the course, he was assigned to the Newmanry (a group within Bletchley), cracking the Lorenz cipher.

Black and white photograph of a young white man in collar and tie
Donald Michie c. 1940s (Add MS 89072/1/5). Reproduced with permission of the estate of Donald Michie.

 During his time at Bletchley, Michie befriended Alan Turing, whom he bonded with over their (relatively) poor standard of chess play. Their shared interest in playing chess badly and work on what we would now consider early computers led Michie and Turing to wonder: could machines be taught to play chess? And, beyond that, could machines think?

The latter question would form the basis of one of Turing’s best-known papers in 1950, a paper which still influences modern computer and AI research. The former led to Michie and Turing theorising their own chess-playing programmes on paper, with the hope that one day they could run them through a computer to test who’s played better. The programmers of Manchester’s early computers put paid to that prospect in the early 1950s, and the Turing-Michie computer chess match never took place.

One popular story abounds for Michie and Turing: during the war, Turing was known to trade his money for bars of silver, which he then buried in various spots around Bletchley Park. He made no note of the location of his silver, for fear of wartime invasion and discovery by the Germans. Post-war, Turing enlisted assistance from Michie to help locate it using a ‘gimcrack’, home-made metal detector. The search for Turing’s buried silver ingots around the grounds of Bletchley proved fruitless, and they remain lost to this day.

Following the end of the war, Michie turned his attentions away from computing and took up his place at Oxford, however not to study classics, as originally planned, but medicine instead. In his own words: ‘After the war, I had been switched on to computing, but there weren’t any computers to do experiments with. I had to do something, so I became a biologist.’ Michie earned his PhD in mammalian genetics in 1953 under the supervision of Ronald Fisher, then moved to the Department of Zoology at University College London. There, he worked alongside his second wife, Anne McLaren, exploring genetic inheritance in mice. Large parts of Michie and McLaren’s work together has become central to the field, such as their work indicating that inbred mice were not best for experimentation. Perhaps most notably, their pioneering research on embryo transfer on mice would later be developed, especially by McLaren, to form the basis of human IVF treatment.

Michie’s research in the 1950s also brought him into contact with the ongoing debate in Britain around the work of Trofim Lysenko. Lysenko was a scientist whose theories dominated Soviet genetics and agricultural science from the 1930s to the 1950s. He took a Lamarckian approach to genetics, arguing that acquired characteristics could be inherited. For example, a mouse which grows a long tail in response to a hot climate could then pass this trait on to its offspring. This theory was hotly contested outside the Soviet sphere of influence, conflicting as it did with the prevailing theories of genetics in Western Europe and the USA. Michie, however, saw some value in Lysenko’s theories and advocated for them to be tested in Britain by both professional scientists and amateur gardeners, hoping this would give the approach greater credibility.

Michie eventually came face-to-face with Lysenko in a chance encounter during a visit to the Moscow Institute of Genetics in 1957. Having camped across Europe in an old car with a friend, Michie met up with McLaren in Moscow, where the two of them interviewed Lysenko. Michie found Lysenko ‘stubborn, impatient, bigoted [and] intolerant’, yet also recognised qualities of ‘energies focussed in the search for understanding and the urge to communicate it’. According to Michie, it would take someone of Lysenko’s temperament and talents to make meaningful scientific advances, or even to ‘revolutionise’ an ‘old branch of knowledge’.

A black and white photograph of four men and two women in a room.
Donald Michie (far right) and Anne McLaren (second from right) with Trofim Lysenko (third from left), 1957 (Add MS 89202/5/48). Reproduced with permission of the estate of Anne McLaren.

 Whilst Lysenko’s fame and appeal faded into the 1960s, Michie’s interest in international exchanges and the sharing of scientific knowledge and practices did not. He hosted many Soviet researchers in Edinburgh and undertook numerous visits beyond the Iron Curtain himself, as well as trips to visit colleagues in the USA.

By the late 1950s, Michie was once again pursuing his interest in artificial intelligence (AI), taking on a bet from a colleague in Edinburgh (where he moved in 1958) that he could not produce a learning machine. The outcome, in 1960, was MENACE (Machine Educable Noughts and Crosses Engine), a matchbox machine which learned, through trial and error, how to play noughts and crosses perfectly. His bet won, Michie threw himself into AI research full-time, co-founding the Experimental Programming Unit at Edinburgh in 1965, followed by the Department of Machine Intelligence and Perception there a year later.

Michie’s importance in AI was perhaps most evident in the early 1970s. Firstly, he and his team at Edinburgh built and programmed a robot, named FREDERICK (Friendly Robot for Education, Discussion and Entertainment, the Retrieval of Information, and the Collation of Knowledge). Freddy II could identify different parts of an object and assembling them. It was amongst the most advanced robots of its kind at the time, integrating perception and action in one machine.

A large robotic pincer grips a crudely-stylised toy car as it rests on a table
Freddy with toy car, c. 1973. Reproduced with the permission of the University of Edinburgh.

 However, this progress was not deemed sufficient. The Science Research Council commissioned Professor Sir James Lighthill to conduct a survey of AI in Britain, and in 1973 he published his report. The report was damning, arguing that progress in AI research was insufficient to justify the funding it was receiving. A BBC TV debate followed at the Royal Institution as part of the series of science debates called, Controversy. Michie, alongside John McCarthy and Richard Gregory, took on Lighthill. The argument was ultimately lost in the eyes of the Science Research Council. AI funding took a heavy hit, with Michie’s department in Edinburgh one of only three university departments left engaging in AI research in the UK. The subsequent decade of AI underfunding came to be known as the ‘AI Winter’ as similar cuts were enacted in the USA.

Michie’s research into AI continued, founding the Turing Institute in Glasgow in 1983. During these later years, Michie returned to Turing’s ideas, in particular the concept of a ‘child-machine’, ‘an educable machine, capable of learning and accumulating knowledge over time’. To this end, Michie developed a chat-bot: Sophie. Sophie was intended as a challenge to the Turing test, i.e. can a machine convince a human it is human? To Michie, ‘the value of the Turing test is not what it says about machine intelligence, but what it says about human intelligence’. He gave Sophie a sense of humour, a backstory, a family; in essence, Sophie had a personality. Apparently ‘Southern California Trash’ was an apt accent for her personality when demonstrating the speech-generating software.

A head-and-shoulders shot of a grinning, balding white man in a suit and tie
Donald Michie c. 1980s (Add MS 88958/5/4). Reproduced with permission of the estate of Donald Michie.

Donald Michie at the British Library
The Donald Michie Papers at the British Library comprises of three separate tranches of material gifted to the library in 2004 and 2008. They consist of correspondence, notes, notebooks, offprints and photographs and are available to researchers through the British Library’s Explore Archives and Manuscripts catalogue at Add MS 88958, Add MS 88975 and Add MS 89072.

Sources and Further Reading:
Michie, D., ‘Interview with Lysenko’, Soviet Science Bulletin, V (1 and 2, 1958), 1-10.
Michie, D., Donald Michie on Machine Intelligence, Biology and more, ed. by Ashwin Srinivasan, (Oxford: Oxford University Press, 2009).
van Emden, M., ‘I Remember Donald Michie (1923 – 2007)’, A Programmer’s Place, 2009, https://vanemden.wordpress.com/2009/06/12/i-remember-donald-michie-1923-2007/ [accessed 30 October 2019].

Matt Wright
Matt Wright is a PhD student at the University of Leeds and the British Library. He is on an AHRC Collaborative Doctoral Partnership researching the Donald Michie Archive, exploring his work as a geneticist and artificial intelligence researcher in post-war Britain.