THE BRITISH LIBRARY

Science blog

75 posts categorized "Science communication"

21 January 2020

INTRODUCING: SUNETRA GUPTA – 11 February 2020

Add comment

Wise Festival - Celebrating the International Day of Women and Girls in Science

The WISE Festival is in particularly excited to announce Professor Sunetra Gupta as its closing speaker. We will be drawing on Sunetra’s unique perspective combining her scientific work on the evolution of pathogens with her experience as an award winning novelist and translator, to discuss science as a part of our culture and not something that is separate, reserved only for scientists and independent of other human endeavour.  How can we create new links and ways of thinking that can enrich our lives beyond the perceived boundaries of science and arts? Do scientific and literary narratives have anything in common? Can science be beautiful? A perfect reflection at the British Library where different fields of knowledge sit alongside each other, ready for new connections to be made by anyone curious and creative. A picture of Sunetra Gupta, novelist, translator and scientist

Sunetra is an acclaimed novelist, essayist and scientist. In October 2012 her fifth novel, So Good in Black, was longlisted for the DSC Prize for South Asian Literature. In 2009 she was named as the winner of the Royal Society Rosalind Franklin Award for her scientific achievements. Sunetra is Professor of Theoretical Epidemiology at Oxford University's Department of Zoology, having graduated in 1987 from Princeton University and received her PhD from the University of London in 1992. Sunetra was born in Calcutta in 1965 and wrote her first works of fiction in Bengali. She is an accomplished translator of the poetry of Rabindranath Tagore.

See more about Sunetra


Join us next time to find out more about our second plenary speaker Danielle George.

WISE (WOMEN IN SCIENCE EVENTS) Festival, British Library 11 February 2020

The British Library is joining in the International Day of Women and Girls in Science, celebrating and raising the voices of women in science with a one day mini festival.  Our events and talks will encourage you to laugh, sing and think.  Every few days this blog will look in more detail at the participants and their involvement with the event.

https://www.bl.uk/events/wise-festival

14 January 2020

INTRODUCING THE WISE FESTIVAL (WOMEN IN SCIENCE EVENTS) – 11 February 2019

Add comment

A handwritten letter from Ada Lovelace to Charles BabbageThe British Library is joining in the International Day of Women and Girls in Science, celebrating and raising the voices of women in science with a one day mini festival. Our events and talks will encourage you to laugh, sing and think. Every few days this blog will look in more detail at the participants and their involvement with the event.

From 1pm drop in to our free Entrance Hall sessions, including fun scientific presentations, hands-on activities and a chance to create your own (bio)selfie using the bacteria swabbed from your cheek. There’s something for all ages and levels of science knowledge. See the full list of activities here.
Then join us for an evening of talks to hear from women about their experiences of working in the sciences. This is a ticketed event and tickets can be purchased from our website.

The British Library holds one of the most comprehensive national science collections in the world, ranging from ancient manuscripts grappling to understand different aspects of the world, prior to the development of science as we know it today, to the latest scientific publications deposited at the Library through the electronic legal deposit every day. The British Library preserves the UK scientific record, supports scientific research and enables access to science for all, which includes supporting equality and diversity in science. During 2020 the Library’s exhibition Unfinished Business: The Fight for Women's Rights will be looking into the struggle for women’s rights in all walks of life which includes an ongoing struggle for equality in all areas of science, technology and engineering. The WISE Festival is an opportunity to start our reflection on women’s rights and to celebrate the achievements of women in science in a way that we hope will be fun, inspirational and thought-provoking.

Join us next time to find out more about Sunetra Gupta.

WISE (WOMEN IN SCIENCE EVENTS) Festival, British Library 11 February 2020.
www.bl.uk/events/wise-festival

15 October 2019

New Scientist Live 2019

Add comment

New Scientist Live 2019 logo
On Friday 11th October, I went to the New Scientist Live show, which is an annual event for the general public about the wonders of science. There are a series of lecture slots, and an exhibition from universities, learned societies, technology companies, commercial and charitable science "experience" organisation, and makers of science-related ornaments and clothing.

The talks I attended were all very interesting. Tom Crawford of Tom Rocks Maths described his work modelling the flows of rivers into oceans as a means of tracking plastics and other forms of pollution, to find the best places to collect them. The flows are controlled primarily by the Earth's rotation, outflow speed, and the density of the river water relevant to the sea.


Sim Singhrao of the University of Central Lancashire described her work on the possible contribution of poor oral hygiene to Alzheimer's disease. The bacterium Porphyromonas gingivalis, which contribures to gum disease, has been found in the brain of Alzheimer's patients, and it is suggested that Alzheimer's disease may be worsened by the action of the immune system in the brain, or protein fragments left behind when the bacteria feed.


Jess Wade of Imperial College, who works on organic semiconducting materials which can be used in products such as flexible displays, gave a lecture on chirality in science, from Louis Pasteur's discovery of optical isomerism in tartaric acid to biological effects, to the possible origins of chirality in polarisation of starlight due to the rotation of galaxies, to chiral selection of electron spin and the role it may play in our nervous system.


Guillermo Rein of Imperial College described the wide range of work involved in fire science, from fires aboard NASA spacecraft, to how polymers burn, to how large buildings can survive fire without structural failure, to the problem of long-lasting peat fires and the severe air pollution that they cause in South-East Asia. His work has not just been theoretical, but has included spectacularly large experiments in both the Czech Republic and Indonesia.


Finally, Ravi Gogna of BAE described work to improve information sharing between police, social workers, health care, and schools to improve child protection and allow problems to be dealth with without heavy-handed interventions. The technology was originally used to raise flags for fraud in financial institutions.

08 March 2019

How Embryologists See: Anne McLaren’s Mouse Models

Add comment

This post forms part of a series on our Science blog highlighting some of the British Library’s science collections as part of British Science Week 2019.

What does an embryo look like? You’ve probably seen pictures –photos of clumps of tiny little cells, most likely taken of a petri dish in a lab. But embryologists face many barriers when bringing these miniscule cells into vision. The developmental biologist Dr Anne McLaren found ways around some of these problems starting with her work in the 1950s.   

In 1952, the mammalian developmental biologist Dr Anne McLaren moved to UCL to begin conducting a series of experiments intended to transplant mouse embryos from the uterus of one mother to the uterus of another, foster, mother – a technique called embryo transfer. There were several reasons for her wanting to do this, but the central one was a problem of vision. She wanted to make the embryos visible. As she explained in 1960,

Experimental embryology in mammals starts with a grave and obvious disadvantage compared to experimental embryology in, say, frogs or sea-urchins - namely the relative inaccessibility of the mammalian embryo. On the other hand it is a subject of particular interest, not only because man himself, and most of his domesticated animals, are mammals, but also because the mammalian embryo goes through almost all the critical stages of development in the most intimate contact with a genetically different organism, its mother.

This intimate relationship between the embryo and its mother in the very early stages of implantation, and the potential applicability of these insights to other mammals, like humans, made this an important area of study. This relationship also represented a prime example of McLaren’s central research interest, namely how the gene and environment interact in development. In the mammal, the maternal uterus crucially provides the environment in which the genes have to exert their effects. This is why maternal effects on inherited characters are of particular interest to McLaren.


At school we are often taught that development looks something like this,

The stages of human embryo development from ovum to foetus.
Illustration: human fertilization and embryogenesis. With kind permission of Gaurab Karki, at www.onlinebiologynotes.com


McLaren saw things differently. Although the embryo could indeed develop into a foetus and a baby, this was only under particular circumstances, in a given environment. McLaren wanted to better understand what was required of this environment for the embryo to develop into a healthy mouse. Development could also go wrong, and it was certainly not as simple as the expression of a set of genes against a neutral backdrop. In fact, she believed that the whole concept of a gene meant fairly little without an adequate account of the environment through which they were expressed. 

 

‘This image has been removed due to expiry of the copyright licence. 'The Bucket Model and When Causes Interact,’ are from The Mirage of a Space Between Nature and Nurture, Evelyn Keller Fox, pp. 8-9, Copyright, 2010, Duke University Press. All rights reserved. Republished by permission of the copyright holder. www.dukeupress.edu



But the problem of being able to see this environment remained. Although she could not look directly inside the womb, McLaren realised that instead she could make the interactions taking place between the embryo and the uterus visible. This was made possible by a phenomenon that had been noticed with the number of lumbar vertebrae, the vertebra starting after the last rib attachment and running down to the last vertebra not sacralised, in the offspring of reciprocal crosses between two strains of mouse. In Problems of Egg Transfer in Mice (1955), she explained,

We suspect the existence of a maternal effect whenever reciprocal crosses are made between two genetically differing strains or varieties, if the progeny differs according to which strain was taken as the maternal parent, and which the paternal. …In species hybrids between the horse and the donkey, the mule, which has a horse mother and a donkey father, differs in a number of respects from the hinny, which has the donkey mother and the horse father. One difference lies in the number of lumbar vertebrae that the animals have. Most mules have 6 lumbar vertebrae, like their mothers; while most hinnies have 5 lumbar vertebrae, again like their mothers.

Another example of this effect observed in mules by John Hammond and Arthur Walton in 1938, was the case of lumbar vertebrae in mice. E. L. Green and W. L. Russel, working at Bar Harbor in New York in 1943, noticed such a phenomenon, a suspected maternal effect on lumbar vertebrae in mice, but their experiments had been stopped short by a fire in their laboratory. The effect presented McLaren with an observable trait that was definitely not just due to chromosomal sex linkage, because the difference also appeared in female progeny of the crossed strains, who of course carry two of the same X chromosome. Even through the trait was not sex-linked, it could still be determined either by the cytoplasm of the egg or the uterine environment that the mother provides. The case thus provided a specific instance of the question of the respective roles of gene and environment in the inheritance of an observable trait. The best way of distinguishing between these contributions, she decided, would be by transferring eggs between females of the two strains, “since such eggs would have the cytoplasm of one strain but the uterine environment of the other” (Research Talk, 1953). If the influence was exerted through the cytoplasm, the young would be unaltered in phenotype by the transfer; but if it was exerted through the uterine environment, the reciprocal difference would be reversed.

Sketch showing an ovum being influenced by either its genotype or the environment.
Image: Is it the uterus or the egg affecting the number of vertebrae of the mice? Copyright estate of Anne McLaren MS89202/12


Embryo transfer techniques had been around for a while – in fact, the pioneer of the technique, Walter Heape had used the technique as early as 1890, to show the exact opposite of what McLaren suspected was the case with lumbar vertebrae – namely that the uterus had absolutely no effect on the developing embryo. As their experiments progressed, McLaren and her then husband and collaborator Donald Michie showed that the uterus, in the case of lumbar vertebrae, did exert an effect on the embryo. The mice in the surrogate uterus expressed the trait of the surrogate, not the genetic mother.  There was something in the maternal uterus, not the cytoplasm, that effected the number of lumbar vertebrae. By the end of the experiment she was not able to determine exactly how  this effect was exerted but, she reflected in 1985, the message of the experiment was clear,

As to how this influence is exerted, from the physiological point of view, we are so far in complete ignorance. But the general moral for the geneticist, I think, is clear: that is, when we are dealing with mammals we must be prepared to extend our picture of the genetic control of morphogenetic processes, to envisage their regulation not only by the action of the embryo's genes, but also by the action of the genes of the maternal organism in which the embryo is gestated

Turning cauliflowers into mice: mouse model growing pains 

As might be expected with such a new technique, it took a while to perfect it, to be able to produce standardised results. In the process, McLaren began to see some unusual things. Indeed, during the early days of the experiments, McLaren and Michie were worried about the appearance of some the fertilised ova being produced by the donor female after they’d administered the hormones to induce ovulation. In a research talk from 1953, McLaren recounts,

During the Summer of last year, we were using two-day eggs only; and one day, actually the day we were rejoicing because for the first time we’d got transferred eggs to develop into mice, our 2-day eggs, instead of looking like normal mouse eggs with 4 or 8 distinct spherical blastomeres, suddenly began to look like cauliflowers. The blastomeres coalesced, and the eggs looked awful.

She goes on,

From that day onward, all their eggs looked like that, and as it seemed obvious that something looking like a cauliflower couldn’t develop into a mouse, we didn’t even bother to transplant many of them, but spent much fruitless effort trying to find the cause of the trouble. However, we’ve now got over this difficulty, partly because by using 3-day eggs, which look quite normal, as well as 2-day eggs; partly because this Summer only some of our 2-day eggs looked like cauliflowers; and partly because we’ve got some evidence that cauliflowers can in fact develop into mice.

These pages from McLaren’s lab notebooks show how she tested different variables, like the PH of the medium in the dish before transfer to the foster mother, or the daylight to which embryos were being exposed. She obtained some strange shapes in the process.

Image of written lines in a notebook
Strange cauliflower shapes. Detail from Anne McLaren’s ‘UCL Embryo Transfer’ laboratory notebook, 1953-1956. Copyright estate of Anne McLaren (Add MS 83843).
Image of written lines in a notebook
‘Ghosts’, or disappearing, eggs. Detail from Anne McLaren’s ‘UCL Embryo Transfer’ laboratory notebook, 1953-1956. Copyright estate of Anne McLaren (Add MS 83843).
Image of written lines in a notebook.
A healthy blastocyst (Cells differentiated into cell layers, preceding the embryo stage) –‘hooray’! Detail from Anne McLaren’s ‘UCL Embryo Transfer’ laboratory notebook, 1953-1956. Copyright estate of Anne McLaren (Add MS 83843).

McLaren was discovering new things about the ways in which embryos could develop, and she didn’t always understand what was going on. The appearance of these cauliflowers in development point to the limited view she was getting. It remained difficult to visualise what was going on at these early stages inside the maternal uterus, and the best the embryologist could do was to set up an limited model of the process, to bring to the fore some of the phenomena she was interested in. But biological models, unlike the ones we draw or build out of inanimate material, don’t always comply. Moreover, the view was always partial, and in this case especially limited because all she could do was move her embryos between uteri –about which she knew very little. The only way of knowing more about the uterus would be by intervening in this environment, changing it in some ways and observing the effects this had on the developing embryo which was impossible while the womb remained inaccessible.  As we shall see, McLaren soon went on to develop another window that would allow her to visualise more directly the forces acting on the embryo during development. 

From wombs to dishes

As far as her interest in making the interactions between uterus and embryo visible was concerned, McLaren had definitely succeeded. She had done this by intervening in the biological process of gestation, by moving an embryo from one mother to another and observing the effects it had on the developing embryo. As we have just seen, this technique threw up obstacles and limitations. The cauliflower effect was just one example of a malformation that McLaren was unable to explain because she had little idea about what the uterine environment was made of. She could not figure out the exact mechanisms by which the uterus acted on the embryo because, in order to do this, she would have to play around with them like she had with the medium in the dish prior to transfer, to isolate different variables until she could figure out what factors were at work. She would have to manipulate to be able to see. At the same time, however, McLaren was developing a very promising technique that could provide the solution – the technique of embryo culture. Writing in 1958, she mentioned a method by which egg transfer enables the experiment to influence the environment of the early mouse embryo directly, instead of through the medium of the mother or the other embryos. In collaboration with Dr. Biggers, I have been culturing 8-16 cell mouse embryos according to the technique of Whitten, on Krebs bicarbonate with glucose and bovine plasma albumen added. In two days at 37 [symbol: degrees], nearly 100% of such embryos reach the blastocyst stage, a development which in vivo takes only one day. I then transferred these blastocysts to the uteri of pregnant female recipients, and found that their viability relative to that of control blastocysts had been in no way impaired by the culture treatment….So far we have done no more than demonstrate the feasibility of the technique; but it seems to me that a study of the effects upon subsequent development of variation in the conditions of culture and the constitution of the culture medium, might provide yet another means to overcome the inaccessibility of the mammalian embryo…

Embryos in dishes would allow McLaren to figure out the conditions needed for normal embryonic development. When she and John Biggers (1958) later showed that a mouse embryo after being cultured outside the womb for over 24 hours, could be replaced in the uterus of a mouse mother and develop into a normal healthy mouse, they had pathed the way for In Vitro Fertilisation in humans that would become a reality 20 years later. IVF, a technique that changed the field of embryology as well as society at large, was just one of the offshoots of McLaren’s explorations of gene-environment interactions.

Marieke Bigg
Ph.D candidate, University of Cambridge

Further reading:

McLaren, Anne, and J. D. Biggers. 1958. ‘Successful Development and Birth of Mice Cultivated in Vitro as Early Embryos.’ Nature 182 (September): 877.
McLaren, Anne. 1958, 1960. Experimental studies on the effect of the prenatal environment. 
McLaren, Anne. 1985. An effect of the uterine environment. 

Marieke Bigg is a Ph.D candidate at the University of Cambridge. After completing a B.A. Honors in comparative literature at the University of Amsterdam, she obtained an M.Phil in sociology from the University of Cambridge. In her current PhD research, which she conducts under the supervision of Professor Sarah Franklin, she draws on the biography of Anne McLaren to map the debates on human embryo research in Britain in the 1980s, and proposes new models for policy-making in the area of human fertilisation and embryology today. She is funded by the Wellcome Trust.

Logo of British Science Week

28 February 2019

A visit to the Joint Library of Ophthalmology at Moorfields Eye Hospital

Add comment

A painting of an eye with round swollen white lesions on the cornea.
Eye painting by an unknown artist from the Moorfields collection, digitised by UCL. Used under a CC-BY Creative Commons license.


Yesterday Philip went on a CILIP-sponsored visit to the Joint Library of Ophthalmology at Moorfields Eye Hospital.

The library is joint between the NHS trust responsible for Moorfields and the UCL Institute for Ophthalmology. The hospital was opened in 1805 in Charterhouse Square as the Dispensary for Curing Diseases of the Eye and Ear. The driving reason for this was the number of soldiers who were returning from the Napoleonic wars in North Africa with what was known as “Egyptian Ophthalmia”, now recognised as trachoma. The founders were John Cunningham Saunders and Dr. John Richard Farre. In 1810 a medical school was opened and alumni were responsible for opening ophthalmic hospitals in other parts of the world. In 1821 the hospital was moved to Lower Moorfields near what is now the Broadgate office complex and renamed the London Ophthalmic Infirmary, although it quickly became popularly known as “Moorfields”. In 1837 it achieved royal patronage and became known as the Royal London Ophthalmic Hospital. In 1897 the hospital moved to its current site in City Road after the Moorfields site became overcrowded. In 1947 the hospital merged with the Royal Westminster Ophthalmic Hospital and Central London Ophthalmic Hospital, and the name officially became Moorfields. A green line is painted on the pavement from Old Street tube station to the hospital main entrance, to help partially-sighted people find their way.

The Institute of Ophthalmology was founded in 1948, initially on the site of the former Central London Ophthalmic Hospital in Judd Street. It became part of UCL in 1995.

The library now includes items from all the predecessor organisations, and as it is considered a national subject collection no material is disposed of. Much of the journal collection was donated in exchange for the content being indexed in either the British Journal of Ophthalmology or Ophthalmic Literature. There are 7000 books, 63 currently subscribed journals, and 250 journals which are no longer published. There are over 280 CDs or DVDs. The library currently keeps paper subscriptions when possible due to concerns about loss of access due to subscription cancellation or technical obsolescence – many of the CDs or DVDs cannot be used due to outdated software requirements. Most of the material is on open shelf apart from the rarer collections. The rarer material consists of 1500 books and pamphlets, many of which have been digitised by the Wellcome Institute and are included in the Wellcome online digital library. There is also a unique collection of 1700 painted images of healthy and pathological eyes. Many of the earlier eye paintings were by the sisters Mary and Alicia Boole, who were daughters of George Boole of Boolean logic fame. They were mathematicians in their own right and many of their siblings and the following generation had notable achievements in science and art. Later twentieth century paintings were created by the talented medical artist Terry Tarrant. The paintings have been digitised by UCL .The rare books include copies of John Dalrymple’s 1834 “Anatomy of the Human Eye”, the first ophthalmic textbook in English, and the “Atlas of Ophthalmoscopy” by Richard Liebreich, inventor of the ophthalmoscope.

There is a photographic collection of patients and their conditions, often “before and after” treatment. This includes an interesting dimension in terms of Victorian attitudes to privacy and personal identification – many poorer patients had their full names given, while more middle or upper-class patients are identified only by given names or initials. There is also a collection of bound notes on patients back to 1877.

Finally, there is a “museum” collection of artifacts. Many of them are originally from the Institute of Ophthalmology. They include eye testing equipment, ophthalmoscopes, surgical instruments and microscopes. Particularly unusual exhibits include an ivory leech holder used to apply leeches to the area around the eye to treat glaucoma, and a pair of prism spectacles that redirect the vision downwards through ninety degrees, to allow patients forced to lie flat on their backs to read more easily.

The library still serves an audience of predominantly medical students and practitioners. They do a lot of training on databases and library inductions. They lend the majority of the material and there are self-service lending/returning terminals. They also do inter-library loan.

Other activities include doing systematic reviews and helping people with basic IT skills.

There are 32 satellite sites with electronic resources only.

Last year the library achieves Platinum status in the Green Impact scheme for environmentalism in libraries, based around recycling and saving energy.

The whole institution is intended to move in a few years time to a new site in the St Pancras area.

18 December 2018

Arabic science manuscripts from the British Library

Add comment

Kitab al sirah
The beginning of Kitāb al-sīrah al-falsafīyah, an autobiographical treatise by the physician and philosopher Abū Bakr Muḥammad ibn Zakarīyā al-Rāzī (Add MS 7473, f. 1v)


Today is World Arabic Language Day, so here's a reminder of the scientific content in our Qatar Digital Library digitisation project. Our friends on the Asian and African Studies blog created two lists of major scientific works digitised in the collection, including Arabic versions of classical scientific texts, some of which were lost from Western European culture until the Renaissance, and original works by great early scientists of the Arabic-speaking world, such as Quṭb al-Dīn al-Shīrāzī, Ibn Sīnā (Avicenna), Ibn Haytham (Alhazen), and Abū Bakr Muḥammad ibn Zakarīyā al-Rāzī (Rhazes).

24 November 2018

Psychology Resources and Research Methods Workshop for Scholars

Add comment

Drawing-of-the-new-British-Library-building-from-Ossulston-Street-by-Colin-St-John-Wilson-c1991

Image source: British Library Press Images

London is blessed with a rich seam of psychology research collections represented by the British Library and the London Psychology Librarians’ Group institutions.

Together curators, reference subject specialists and psychology librarians support students, researchers and professionals in advancing our understanding the the mind, brain and behavior.

You are warmly welcome to a free workshop on Monday 3 rd December at the British Library in the afternoon, focusing on psychology research resources in London.

Monday 3 December (14.00-17.00)

This workshop, for registered Readers (and those who would find it useful to register as readers for their research needs) takes place in the Eliot Training Room in the Library’s Knowledge Centre. The workshop programme is:

Part 1: Welcome to the Library and introduction to the London Psychology Librarians Group:

  • Qualitative methods in psychology research; Christine Ozolins, Neuroscience researcher, Birkbeck College
  • Psychology collections: the London Landscape; Mura Ghosh, Research Librarian, Senate House Library

14.50-15.30 Tea break (Tea provided)

Part 2 British Library Psychology Resources and Information Literacy:

  • Information literacy for psychology research; James Soderman/Paula Funnell, Liaison Librarians, Queen Mary College
  • The post graduate psychology student voice; Holly Walton, Psychology post graduate representative
  • Psychology resources in the British Library; Paul Allchin, British Library, Reference specialist,

16.30-17.00: Question & answer session.

To find out more or to book a place, please email us at: ReferenceServicesTraining@bl.uk or speak to a member of staff at the Science Reference Desk.

The speakers will share their expertise on the what, where, and how of psychology research in London based libraries and the research needs of students and researchers generally.

A Victorian line drawing showing a person's hairless head face-on, with the area above the eyes divided into numbered sections.

Image source: https://www.flickr.com/photos/britishlibrary/11004937825/

Posted by Paul Allchin - Reference Specialist, Science.

13 November 2018

The centenary of the 1918 flu pandemic

Add comment

A blonde woman in a white leotard contorts herself in apparent pain on a hospital bed, on a background of microscope images of cells.
A dancer in "Contagion", a piece memorialising the pandemic presented at the British Library earlier in November


This November sees not just the centenary of the end of the First World War, but the centenary of the peak of the influenza epidemic that came at its end. The 1918 flu epidemic may have killed fifty million people or more worldwide, over three times the number of people killed in the war. It is thought to have been the third worst disease epidemic ever in Europe, after the fourteenth-century Black Death and the sixth-century Plague of Justinian. 228,000 people died in the UK, with as many as a third of the population infected, although the death rate among those who fell ill was around 2.5%. 1918 was the first year since official records began that deaths in Britain outnumbered births. Epidemiological studies have shown that children whose mothers suffered flu during pregnancy suffered lifelong negative effects on their health and employment histories.

 The flu is still sometimes known as the Spanish Flu, although this is a misnomer that, even at the time, seriously upset the Spaniards. It was associated with Spain because Spain, being neutral in the war, had less media censorship than other European countries, so that the epidemic was more honestly reported. The first unambiguous cases of the pandemic broke out at a US Army base in Kansas in March 1918. The first worldwide wave continued through the spring and summer, but appeared to be no more problematic than ordinary flu. The second, far more lethal wave, occurred in September to December 1918, while a third, less serious wave took place in the first half of 1919.

However, some people have suggested that earlier outbreaks of disease may have been unrecognised early stages of the flu pandemic. Particular suspicion has been cast on an outbreak of a lung disease called at the time "purulent bronchities" which struck the Allied Powers' huge military camp at Etaples in France in early 1917, and a lethal epidemic of lung infection which hit the region of Shansi in China in the winter of 1917-8, although that was believed by local authorities at the time, and many scientists to this day, to have been pneumonic plague.

A major question, especially given the possibility of further flu pandemics in the future, is what made the 1918 virus so lethal. As well as the sheer number of fatalities, it was unusual in killing young and healthy people in large numbers, rather than those who were elderly or frail. Some people have blamed the physical and psychological stresses of the war, and in particular the long-term effects of chemical warfare, for this, but young people also died in countries which were barely affected by the war. It has been suggested that healthy people died because of a phenomenon known as "cytokine storm", where the influenza infection causes the immune system to go into such a state of extreme activity that it itself causes fatal damage to the lungs. This is more likely to happen in people with healthier immune systems, although recent work has suggested that it might be more likely in people with a specific genetic condition in which the first stage of immune response, involving the production of interferon, is unusually weak.

In 2005, the genetic code of the 1918 virus was sequenced from samples taken from the body of a woman buried in Alaska, which had been partly preserved by the cold climate. This indicated that the 1918 virus was a member of the "H1" type of flue virii. That gave rise to a new theory about the higher death rate among young people - for the previous thirty years the majority of influenza circulating worldwide had been of the "H3" type, so older people may have been more likely to have encountered H1 influenza before and had more immunity to it.

Another mystery is why the 1918 pandemic had so little apparent cultural impact at the time. The most famous deaths from the virus were the poet Guillaume Apollinaire, the artist Egon Schiele (along with his wife Edith, who was pregnant with their first child), and John McCrae, author of one of the most famous poems of WWI remembrance, "In Flanders Fields". It also had a wider historical impact. Some military historians argue that the last major German offensive in 1918 failed only because of flu among the soldiers. The British prime minister David Lloyd George nearly died, although this was covered up at the time. The Versailles Treaty might potentially have been less harsh on Germany, reducing the chances of WWII, if the US President, Woodrow Wilson, had not been incapacitated with the flu during the later part of the negotiations. And the death of the leading USSR politician and administrator Yakov Sverdlov has been said to have opened up an opportunity for Josef Stalin to begin his rise to power. Some suggest that the influenza was not seen by people in general as a separate catastrophe from the war, while others have argued that, despite the death toll, it was seen as "just the flu" in an era when death from infectious disease was still much more common than it is today.

Further reading:

Honigsbaum, M. Living with Enza. London: Macmillan: 2009. Shelfmark YC.2009.a.3229 or m08/.36952
Johnson, N. Britain and the 1918-19 influenza pandemic (Routledge studies in the social history of medicine no. 23). Abingdon: Routledge, 2006. Shelfmark YC.2007.a.11206 or 8026.519925 no. 23
Ministry of Health. Report of the pandemic of influenza 1918-19, Reports on public health and medical subjects, 1920, No. 4. Shelfmarks B.S. 17/1, (P) HF 00-E(18), or 7665.590000
Spinney, L. Pale rider. London: Jonathan Cape, 2017. Shelfmark YC.2018.a.7038, or available in British Library Reading Rooms as Legal Deposit e-Book.

Posted by Philip Eagle

25 September 2018

New Scientist Live

Add comment

A poster for "New Scientist Live", showing abstract red globes on a black background.
I visited New Scientist Live at Excel on Friday, which is an annual event aimed at popularising science, promoted by the weekly popular science magazine. There were a wide range of exhibitors, a mixture of learned societies, universities, technology companies, commercial and charitable organisations offering science "experiences", and makers of scientific ornaments and clothing.

There were also forty-minute talk slots throughout the day by different speakers on current science. The celebrity names were on a VIP stage offered only to those who bought more expensive tickets, but the other talks I attended were all very interesting.

Lee Cronin from Glasgow University described his work on creating a chemical computer, using the two states of a reversible Belousov-Zhabotinsky reaction as the equivalents of the binary 0 and 1. At the moment, the system is at proof of concept stage, but it holds the potential to produce computers more powerful than anything achievable using traditional solid-state electronics.

Paul Bernal gave a somewhat depressing but convincing talk on the difficulties of preventing online "fake news" and bullying. "Fake news" arguably dates back to the early modern era or even earlier, with the circulation of slanderous woodcut broadsheets and songs about peoples' political enemies, while online bullying essentially transfers eternal human social dynamics onto social media, with the novelty lying in the speed and scale with which such behaviour can occur. Bernal pointed out that "fake news" on Facebook and bullying on Twitter are negative versions of precisely what the platforms have been designed to do in terms of, respectively, acting as a powerful advertising medium and providing a means of large scale conversation which anyone can join. Bernal told the cautionary and morally ambiguous story of Brenda Leyland, a woman who bombarded the parents of the missing child Madeleine McCann with online allegations that they had killed their daughter... and was then driven to suicide by the hounding she received from the traditional news media.

James Wong discussed the argument (commonly made by organic-farming campaigners) that nutrient levels in plant foods have been declining due to industrialised food production. His arguments were that this has been observed, and is probably due to faster-growing varieties failing to absorb minerals as efficiently, but that the effect is probably not significant compared to other causes of variation in crop nutrient content such as weather and storage conditions, and is outweighed by the sheer increase in food quantity and variety that modern agriculture and international trade have achieved.

Patricia Vargas's talk was billed somewhat misleadingly as a discussion of whether AIs deserve human rights, but instead dealt more with characteristics that robots might be designed with, that would make humans more likely to accept them in their daily lives and form emotional attachments to them. She mentioned in particular robot pets, such as PLEO, based on a baby dinosaur, and Paro, based on a baby seal.

Fianlly, Mark Miodownik gave an entertaining talk, with demonstrations, on the nature and history of kerosene as a fuel.

07 June 2018

The sixtieth birthday of obstetric ultrasound

Add comment

Ultrasound image
Ultrasound image by mylissa, CC-BY-SA

Today is the sixtieth anniversary of the publication in The Lancet of the first scholarly article on medical ultrasound by the obstetricians Ian Donald and John MacVicar, and the engineer Tom Brown. While earlier groups had experimented with ultrasound, it was Donald and Brown who achieved real diagnostic success with it, and popularised it in the medical profession. They initially applied it to distinguish uterine cysts from solid tumours such as fibroids, and later developed it for other important tasks, such as diagnosing placenta praevia (a potentially lethal condition during pregnancy in which the placenta attaches too low down in the womb) and directly observing foetuses. It is thanks to their work that ultrasound has become routine in pregnancy and many peoples' first view of their children. 

Donald had become interested in the potential of ultrasound for medicine thanks to his experience with both radar and sonar while serving in the RAF during World War II. Much of his success was because he happened to work for the University of Glasgow, in a city with a large-scale shipbuilding industry which used ultrasonic techniques to test for flaws in metal parts. It was also the home of Kelvin and Hughes, one of the main manufacturers of ultrasonic testing equipment, for which company Brown worked.

There was also a particular perceived need at the time for a safer method of examining foetuses in the womb, as epidemiological studies had discovered that X-ray examinations during pregnancy led to a higher risk of leukaemia and other cancers in the early lives of the children.

Donald subsequently became a celebrity not just for his scientific and medical skills, but as a prominent medical campaigner against abortion. He frequently stated that his observations of foetuses in the womb had confirmed him in his belief that they qualified as human beings from conception, although unlike some religious pro-life campaigners he morally accepted abortion when the foetus was clearly unlikely to survive childbirth or where the child would be very severely disabled. Brown's career effectively ended with the failure of an attempt to start a business producing medical ultrasound equipment, and he felt later in life that much of the media neglected his vital technological contributions to the development of the idea, although Donald always acknowledged them in public.

Further reading:

Brown, T G. Personal recollections. 1999. Available free online at http://www.ob-ultrasound.net/brown-on-ultrasound.html
Craig, M. Craig's Essentials of Sonography and patient care, Baltimore: Saunders, 2018. Available as an ebook in the British Library reading rooms.
Donald, I, MacVicar, J, and Brown, T G. Investigation of abdominal masses by pulsed ultrasound, The Lancet, 1958, 271(7032), pp. 1188-1195. Available at (P) GP 00 - E(14) and also electronically in the British Library reading rooms.
Nicholson, M and Fleming, J E E. Imaging and imagining the foetus. Baltimore: Johns Hopkins University Press, 2014. Available at YK.2014.a.7586.
Norton, M E. Callen's Ultrasonography in obstetrics and gynecology, Elsevier, 2016. Available as an ebook in the British Library reading rooms.